Skip to main content

Advertisement

Log in

Radiolabeling, docking studies, in silico ADME and biological evaluation of serotonin with 125I for 5-HTRs imaging

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Serotonin is one of the significant signaling molecules used by several neural systems in the gut and brain. This study aimed to develop a novel and potent tracer for targeting, detecting, and imaging serotonin receptors (5-HTRs), which is a promising tool in the determination of the receptor’s function and relationship with the diseases related to serotonin and its receptor dysfunction. Serotonin was effectively labeled via a direct electrophilic substitutional reaction using an oxidizing agent such as iodogen with 125I in a neutral medium, and 125I-serotonin was achieved with a maximum labeling yield of 91 ± 0.63% with in vitro stability up to 24 h. Molecular modeling was conducted to signify 125I-serotonin structure and confirm that the radiolabeling process did not affect serotonin binding ability to its receptors. Biodistribution studies show that the maximum gastro intestinal tract uptake of 125I-serotonin was 17.8 ± 0.93% ID/organ after 30 min postinjection and the tracer’s ability to pass the blood–brain barrier. Thus, 125 I-serotonin is a promising single photon emission computed tomography tracer in the detection of 5HTRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Z. Li, A. Chalazonitis, Y.Y. Huang et al., Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J. Neurosci. 31, 8998–9009 (2011). https://doi.org/10.1523/JNEUROSCI.6684-10

    Article  Google Scholar 

  2. N. Terry, K.G. Margolis, serotonergic mechanisms regulating the GI tract: experimental evidence and therapeutic relevance. Handb. Exp. Pharmacol. 239, 319–342 (2017). https://doi.org/10.1007/164_2016_103

    Article  Google Scholar 

  3. K.O. Grønstad, L. DeMagistris, A. Dahlström et al., The effects of vagal nerve stimulation on endoluminal release of serotonin and substance P into the feline small intestine. J. Scand. Gastroenterol. 20, 163–169 (1985). https://doi.org/10.3109/00365528509089650

    Article  Google Scholar 

  4. J.J. Chen, L.I. Zhishan, H. Pan et al., Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high-affinity serotonin transporter: abnormal intestinal motility and the expression of cation transporters. J. Neurosci. 21, 6348–6361 (2001). https://doi.org/10.1523/JNEUROSCI.21-16-06348

    Article  Google Scholar 

  5. E. Bülbring, A. Creema, The release of 5-hydroxytryptamine in relation to pressure exerted on the intestinal mucosa. J. Physiol. 146, 18–28 (1959). https://doi.org/10.1113/jphysiol.1959.sp006175

    Article  Google Scholar 

  6. P.P. Bertrand, Real-time detection of serotonin release from enterochromaffin cells of the guinea—pig ileum. Neurogastroenterol. Motil. 16, 511–514 (2004). https://doi.org/10.1111/j.1365-2982.2004.00572.x

    Article  Google Scholar 

  7. H. Schwörer, K. Racké, H. Kilbinger, Cholinergic modulation of the release of 5-hydroxtryptamine from the guinea pig ileum. Naunyn-Schmiedeberg’s Arch. Pharmacol. 336, 127–132 (1987). https://doi.org/10.1007/BF00165795

    Article  Google Scholar 

  8. K. Racké, A. Reimann, H. Schwörer et al., Regulation of 5-HT release from enterochromaffin cells. Behav. Brain. Res. 73, 83–87 (1996). https://doi.org/10.1016/0166-4328(96)00075-7

    Article  Google Scholar 

  9. M.D. Gershon, Nerves reflexes and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J. Clin. Gastroenterol. 39, 184–193 (2005). https://doi.org/10.1097/01.mcg.0000156403.37240.30

    Article  Google Scholar 

  10. V. Erspamer, Occurrence of indolealkylamines in nature. Handbook of experimental pharmacology, vol. 19 (Springer, New York, 1966), pp. 132–181

    Google Scholar 

  11. M.D. Gershon, The serotonin signaling system: from basic understanding to drug development for functional GI disorders. J. Gastroenterol. 132, 397–414 (2007). https://doi.org/10.1053/j.gastro.2006.11.002

    Article  Google Scholar 

  12. M.D. Gershon, 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes. 20, 14–21 (2013). https://doi.org/10.1097/MED.0b013e32835bc703

    Article  Google Scholar 

  13. M. Vialli, Histology of the enterochromaffin cell system. Handbook of experimental pharmacology, vol. 19 (Springer, New York, 1966), pp. 1–65

    Google Scholar 

  14. L. Lemoine, J. Andries, D.L. Bars et al., Comparison of 4 radiolabeled antagonists for serotonin 5-HT7 receptor neuroimaging: toward the first PET radiotracer. J. Nucl. Med. 52, 1811–1818 (2011). https://doi.org/10.2967/jnumed.111.089185

    Article  Google Scholar 

  15. B. Vidal, S. Fieux, M. Colom et al., 18F–F13640 preclinical evaluation in rodent, cat and primate as a 5-HT1A receptor agonist for PET neuroimaging. Brain Struct. Funct. 223, 2973–2988 (2018). https://doi.org/10.1007/s00429-018-1672-7

    Article  Google Scholar 

  16. L.M. Paterson, B.R. Kornum, D.J. Nutt et al., 5-HT radioligands for human brain imaging with PET and SPECT. Med Res Rev. 33, 54–111 (2013). https://doi.org/10.1002/med.20245

    Article  Google Scholar 

  17. G.B. Meerveld, K. Venkova, G. Hicks et al., Activation of peripheral 5-HT receptors attenuates colonic sensitivity to intraluminal distension. Neurogastroenterol. Motil. 18, 76–86 (2006). https://doi.org/10.1111/j.1365-2982.2005.00723.x

    Article  Google Scholar 

  18. L.M. Paterson, R.J. Tayak, D.J. Nutt et al., Measuring endogenous 5-HT release by emission tomography: promises and pitfalls. J. Cereb. Blood Flow Metab. 30, 1682–1706 (2010). https://doi.org/10.1038/jcbfm.2010.104

    Article  Google Scholar 

  19. S.N. Farrag, A. Hanan, E.M. Abdulaziz et al., Comparative study on radiolabeling and biodistribution of core-shell silver/polymeric nanoparticles-based theranostics for tumor targeting. Int. J. Pharm. 529, 123–133 (2017). https://doi.org/10.1016/j.ijpharm.2017.06.044

    Article  Google Scholar 

  20. F. Côté, E. Thévenot, C. Fligny et al., Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function. Proc. Natl. Acad. Sci. USA 100, 13525–13530 (2003). https://doi.org/10.1073/pnas.2233056100

    Article  Google Scholar 

  21. S.N. Farrag, A.O. Abdel Moamen, Facile radiolabeling optimization process via design of experiments and an intelligent optimization algorithm: application for omeprazole radioiodination. J. Label Compd. Radiopharm. 62, 280–287 (2019). https://doi.org/10.1002/jlcr.3734

    Article  Google Scholar 

  22. M.A. Motaleb, M.T. El-Kolaly, H.M. Rashed et al., Radioiodinated paroxetine, a novel potential radiopharmaceutical for lung perfusion scan. J. Radioana.l Nucl. Chem. 292, 629–635 (2012). https://doi.org/10.1007/s10967-011-1499-7

    Article  Google Scholar 

  23. J. Thomas, R. Khanam, D. Vohora, A validated HPLC-UV method and optimization of sample preparation technique for norepinephrine and serotonin in mouse brain. J. Pharmaceutical. Biol. 53, 1539–1544 (2015). https://doi.org/10.3109/13880209.2014.991837

    Article  Google Scholar 

  24. M.H. Sanad, M. El-Tawoosy, Labeling of ursodeoxycholic acid with technetium-99m for hepatobiliary imaging. J. Radioanal. Nucl. Chem. 298, 1105–1109 (2013). https://doi.org/10.1007/s10967-013-2512-0

    Article  Google Scholar 

  25. B.S. Challan, A. Massoud, Radiolabeling of graphene oxide by Tchnetium-99m for infection imaging in rats. J. Radioanal. Nucl. Chem. 314, 2189–2199 (2017). https://doi.org/10.1007/s10967-017-5561-y

    Article  Google Scholar 

  26. T. Sharma, L.S. Guski, N. Freund et al., Suicidality and aggression during antidepressant treatment: systematic review and meta-analyses based on clinical study reports. BMJ 352, i65 (2016). https://doi.org/10.1136/bmj.i65

    Article  Google Scholar 

  27. A.M. Amin, N.S. Farrag, A. AbdEl-Bary, Iodine-125-chlorambucil as possible radio anticancer for diagnosis and therapy of cancer: preparation and tissue distribution. B J P R 4, 1873–1885 (2014). https://doi.org/10.9734/BJPR/2014/10520

    Article  Google Scholar 

  28. A.M. Amin, A. Abd El-Bary, M. Shoukry, Shoukry Study of the conditions for ibuprofen labeling with 125I to prepare an inflammation imaging agent. J. Radiochem. 55, 615–619 (2013). https://doi.org/10.1134/S106636221306009X

    Article  Google Scholar 

  29. K.M. El-Azony, A.A. El-Mohty, H.M. Killa et al., An investigation of the 125I-radioiodination of colchicine for medical purposes. J. Labelled. Compds. Radiopharm. 52, 1–3 (2008). https://doi.org/10.1002/jlcr.1556

    Article  Google Scholar 

  30. K. El-Azony, Preparation of 125 I-celecoxib with high purity as a possible tumor agent. J. Radioanal. Nucl. Chem. 285, 315–320 (2010). https://doi.org/10.1007/s10967-010-0583-8

    Article  Google Scholar 

  31. A. Braganza, W.O. Wilson, Elevated temperature effects on catecholamines and serotonin in brains of male Japanese quail. J Appl. Physiol. Respir. Environ. Exerc. Phys. 45, 705–708 (1978). https://doi.org/10.1152/jappl.1978.45.5.705

    Article  Google Scholar 

  32. B.M. Essa, T.M. Sakr, M.A. Khedr et al., 99mTc-amitrol as a novel selective imaging probe for solid tumer: in Silico and preclinical pharmacological study. J Eur Pharm Sci. 76, 102–109 (2015). https://doi.org/10.1016/j.ejps.2015.05.002

    Article  Google Scholar 

  33. E.J. Knust, K. Dutschk, Radiopharmaceutical preparation of 3–123I-α-methyltyrosine for nuclearmedical applications. J. Radioannal. Nucl. Chem. 144, 107–113 (1990)

    Article  Google Scholar 

  34. H.M. Rashed, I.T. Ibrahim, M.A. Motaleb, A. Abd El-Bary, Preparation of radioiodinated ritodrine as a potential agent for lung imaging. J. Radioanal. Nucl. Chem. 300, 1227–1233 (2014). https://doi.org/10.1007/s10967-014-3077-2

    Article  Google Scholar 

  35. S. G-Deniau, A.F. Burnol, J. Girard, Identification and localization of a skeletal muscle secrotonin 5-HT2A receptor coupled to the Jak/STAT Pathway. J. Biol. Chem. 272, 14825–14829 (1997). https://doi.org/10.1074/jbc.272.23.14825

    Article  Google Scholar 

  36. N.R. Waterhouse, Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol. Imag. Biol. 5, 376–389 (2003). https://doi.org/10.1016/j.mibio.2003.09.014

    Article  Google Scholar 

  37. Y.H. Zhao, M.H. Abraham, Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J. Pharm. Sci. 90, 749–784 (2001). https://doi.org/10.1002/jps.1031

    Article  Google Scholar 

  38. T.J. Hou, W. Zhang, ADME evaluation in drug discovery. Correlation of caco-2 permeation with simple molecular properties. J. Chem. Inf. Comput. Sci. 44, 1585–1600 (2004). https://doi.org/10.1021/ci049884m

    Article  Google Scholar 

  39. Y.C. Chang, C.P. Chen, C.C. Chen, 2012 International symposium on safety science and technology predicting skin permeability of chemical substances using a quantitative structure-activity relationship. Proc. Eng. 45, 875–879 (2012). https://doi.org/10.1016/j.proeng.2012.08.252

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dina M. El-Sharawy or Asmaa M. AboulMagd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sharawy, D.M., Refaye, M.S.E., Hussien, H. et al. Radiolabeling, docking studies, in silico ADME and biological evaluation of serotonin with 125I for 5-HTRs imaging. NUCL SCI TECH 31, 80 (2020). https://doi.org/10.1007/s41365-020-00784-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00784-9

Keywords

Navigation