Skip to main content
Log in

Evaluation of cosmogenic activation of copper and germanium during production in Jinping Underground Laboratory

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Intrinsic radiation of materials is one of the major backgrounds for many rare-event search experiments. Thus, the production of pure materials in an underground laboratory is a promising approach for eliminating cosmogenic radionuclides. In this paper, we demonstrate a procedure to evaluate the yields of cosmogenic radionuclides in copper and germanium in the second phase of the China Jinping Underground Laboratory. Our results show that for copper and germanium materials, the largest cosmogenic background comes from \(^{3}\)H and \(^{57,58,60}\)Co, and \(^{3}\)H and \(^{68}\)Ge, respectively, which all have yields on the order of \(10^{-7} \;{\mathrm {kg}}^{-1}\,{\mathrm {day}}^{-1}\). The corresponding radioactivities after 90 days pf exposure underground are estimated to be lower than 10−6 μBq kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.J. Kang, J.P. Cheng, J. Li et al., Introduction to the CDEX experiment. Front. Phys. 8, 412–437 (2013). https://doi.org/10.1007/s11467-013-0349-1

    Article  Google Scholar 

  2. C.E. Aalseth, P.S. Barbeau, J. Colaresi et al., CoGeNT: a search for low-mass dark matter using p-type point contact germanium detectors. Phys. Rev. D Part. Fields Gravit. Cosmol. 88, 012002 (2013). https://doi.org/10.1103/PhysRevD.88.012002

    Article  Google Scholar 

  3. R. Agnese, A.J. Anderson, T. Aramaki et al., Projected sensitivity of the SuperCDMS SNOLAB experiment. Phys. Rev. D 95, 082002 (2017). https://doi.org/10.1103/PhysRevD.95.082002

    Article  Google Scholar 

  4. E. Armengaud, Q. Arnaud, C. Augier et al., Measurement of the cosmogenic activation of germanium detectors in edelweiss-III. Astropart. Phys. 91, 51–64 (2017). https://doi.org/10.1016/j.astropartphys.2017.03.006

    Article  Google Scholar 

  5. M. Agostini, M. Allardt, A.M. Bakalyarov et al., Background-free search for neutrinoless double-\(\beta\) decay of \(^{76}\)Ge with GERDA. Nature 544, 47–52 (2017). https://doi.org/10.1038/nature21717

    Article  Google Scholar 

  6. N. Abgrall, I.J. Arnquist et al., The Majorana demonstrator radioassay program. Nucl. Instrum. Methods Phys. Res. Sect. A Acc. Spectrom. Detect. Assoc. Equip. 828, 22–36 (2016). https://doi.org/10.1016/j.nima.2016.04.070

    Article  Google Scholar 

  7. J. Ma, Q. Yue, S. Lin et al., Study on cosmogenic activation in germanium detectors for future tonne-scale cdex experiment. Sci. China Phys. Mech. Astron. 62, 11011 (2018). https://doi.org/10.1007/s11433-018-9215-0

    Article  Google Scholar 

  8. C. Patrignani et al., Particle data group. Review of particle physics. Chin. Phys. C 40(10), 421–428 (2016). https://doi.org/10.1088/1674-1137/40/10/100001

    Article  Google Scholar 

  9. Y.-C. Wu, X.-Q. Hao, Q. Yue et al., Measurement of cosmic ray flux in the China JinPing underground laboratory. Chin. Phys. C 37, 086001 (2013). https://doi.org/10.1088/1674-1137/37/8/086001

    Article  Google Scholar 

  10. J. Su, Z. Zeng et al., Monte Carlo simulation of muon radiation environment in China Jinping Underground Laboratory. High Power Laser Part. Beams 24 2012(12), 3015–3018 (2012). https://doi.org/10.3788/HPLPB20122412.3015

    Article  Google Scholar 

  11. V.A. Kudryavtsev, Muon simulation codes MUSIC and MUSUN for underground physics. Comput. Phys. Commun. 180(3), 339–346 (2009). https://doi.org/10.1016/j.cpc.2008.10.013

    Article  MATH  Google Scholar 

  12. T.K. Gaisser, R. Engel, E. Resconi, Cosmic Rays and Particle Physics, 2nd edn. (Cambridge University Press, Cambridge, 2016), pp. 1–29. https://doi.org/10.1017/CBO9781139192194

  13. S. Agostinelli et al., Geant4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506(3), 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  14. J.J. Back, Y.A. Ramachers, ACTIVIA: calculation of isotope production cross-sections and yields. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 586, 286–294 (2008). https://doi.org/10.1016/j.nima.2007.12.008

    Article  Google Scholar 

  15. Q. Hu, H. Ma, Z. Zeng et al., Neutron background measurements at China Jinping underground laboratory with a Bonner multisphere spectrometer. Nucl. Instrum. Methodds A 859, 37–40 (2017). https://doi.org/10.1016/j.nima.2017.03.048

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Zeng.

Additional information

This work was supported by the National Natural Science Foundation of China (No. U1865205).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, WH., Ma, H., Zeng, M. et al. Evaluation of cosmogenic activation of copper and germanium during production in Jinping Underground Laboratory. NUCL SCI TECH 31, 50 (2020). https://doi.org/10.1007/s41365-020-00760-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00760-3

Keywords

Navigation