Skip to main content
Log in

Attenuation coefficients of gamma and X-rays passing through six materials

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the attenuation of gamma and X-rays with different energies caused by passage through different materials. To this end, different materials with a range of atomic numbers were chosen to measure gamma and X-ray attenuation coefficients and to explore the mechanisms of interaction of gamma and X-rays with matter of various kinds. It is shown that the attenuation coefficients first decrease and then increase with increase in the radiation (photon) energy. The attenuation of gamma and X-rays passing through materials with high atomic number is greater than that in materials with low atomic number. The attenuation minimum is related to the atomic number of the irradiated materials. The larger the atomic number is, the lower the energy corresponding to attenuation minimum is. Photoelectric and Compton effects are the main processes when gamma rays pass through individual materials with high and low atomic numbers, respectively. Therefore, for radiotherapy and radiation protection, different methods should be considered and selected for the use of gamma and X-rays of different energies for use in different materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.Z. Luo, Application of Nuclear Technology (Harbin Engineering University Press, Harbin, 2009). (in Chinese)

    Google Scholar 

  2. M.D. Bethesda, Structural shielding design for medical imaging X-ray facilities. Phys. Med. Biol. 50, 4243–4244 (2005). https://doi.org/10.1088//0031-9155/50/17/B01

    Article  Google Scholar 

  3. K.P. Adhikari, A medical physics perspective: radiation therapy in Nepal. Med. Phys. Int. J. 6, 145–147 (2018)

    Google Scholar 

  4. E. Rosenblatt, Planning national radiotherapy services. Front. Oncol. (2014). https://doi.org/10.3389/fonc.2014.00315

    Article  Google Scholar 

  5. A.W. Lightstone, S.H. Benedict, F.J. Bova et al., Intracranial stereotactic positioning systems: report of the American Association of Physicists in Medicine Radiation Therapy Committee Task Group No. 68. Med. Phys. 32, 2380–2398 (2005). https://doi.org/10.1118/1.1945347

    Article  Google Scholar 

  6. A.A. El-Sayed, M.A. El-Sarraf, F.A. Gaber, Utilization of ilmenite/epoxy composite for neutrons and gamma rays attenuation. Ann. Nucl. Energy 30, 175–187 (2003). https://doi.org/10.1016/s0306-4549(02)00052-X

    Article  Google Scholar 

  7. R. Allen, S.C. Edwards, The repair of concrete structures. Cem. Concrete Assoc. 22, 125–138 (1987). https://doi.org/10.1080/00218468708074996

    Article  Google Scholar 

  8. H.S. Hu, Q.S. Wang, J. Qin et al., Study on composite material for shielding mixed neutron and \(\gamma\)-rays. IEEE Trans. Nucl. Sci. 55, 2376–2384 (2008). https://doi.org/10.1109/TNS.2008.2000800

    Article  Google Scholar 

  9. S. Kaur, K.J. Singh, Investigation of lead borate glasses doped with aluminum oxide as gamma ray shielding materials. Ann. Nucl. Energy 63, 350–354 (2014). https://doi.org/10.1016/j.anucene.2013.08.012

    Article  Google Scholar 

  10. M. Kozlovska, R. Cerny, P. Otahal, Attenuation of X and gamma rays in personal radiation shielding protective clothing. Radiat. Saf. J. 109, S205–S211 (2015). https://doi.org/10.1097/HP.0000000000000361

    Article  Google Scholar 

  11. K. Vance, A. Ozer, A. Salahuddin, H. Sabbi, Dosimetric comparison of intracranial metastasis treatment using two radiosurgery systems: TrueBeam STx with VMAT and Gamma Knife Model 4C. J. Radiosurg. SBRT 4, 235–243 (2016)

    Google Scholar 

  12. L.S. Chin, S. DiBiase, Radiation necrosis following gamma knife surgery: a case-controlled comparison of treatment parameters and long-term clinical follow up. J. Neurosurg. 94, 899–904 (2001). https://doi.org/10.3171/jns.2001.94.6.0899

    Article  Google Scholar 

  13. G. Kragl, S. AfWetterstedt, B. Knäusl et al., Dosimetric characteristics of 6 and 10 MV un-attened photon beams. Radiother. Oncol. 93, 141–146 (2009). https://doi.org/10.1016/j.radonc.2009.06.008

    Article  Google Scholar 

  14. U. Titt, O.N. Vassiliev, F. Pönisch, L. Dong, H. Liu, R. Mohan, A flattening filter free photon treatment concept evaluation with Monte Carlo. Med. Phys. 33, 1595–1602 (2006). https://doi.org/10.1118/1.2198327

    Article  Google Scholar 

  15. Q.S. Zheng, G.Y. Yu, X. He, M. Jiang, X.F. Chu, S.Y. Zhao, S.J. Fan, P.X. Liu, Protective effect of S-isopentenyl-L-cysteine against DNA damage in irradiated mice. Acta Acad. Med. Sin. 37, 496–500 (2018). https://doi.org/10.3881/j.issn.1000-503X.2015.05.002

    Article  Google Scholar 

  16. M.I. Koukourakis, D. Pitsiava, A. Giatromanolaki et al., Amifostine-related fever-rash during fractionated radiotherapy: diagnostic and predictive role of C-reactive protein. Am. J. Clin. Oncol. 34, 281–285 (2011). https://doi.org/10.1097/COC.0b013e3181dea7bd

    Article  Google Scholar 

  17. X.H. Li, Radiation Radiology and Protection (Atomic Energy Press, Beijing, 1980), pp. 17–23

    Google Scholar 

  18. R.D. Evans, Energy dependence of the various gamma-ray interaction processes in sodium iodide, in The Atomic Nucleus, ed. by R.D. Evans (the McGraw-Hill Book Company, New York, 1955)

    MATH  Google Scholar 

  19. X.T. Lu, D.X. Jiang, Y.L. Ye, Nuclear Physics, vol. 63 (Atomic Energy Press, Beijing, 2000)

    Google Scholar 

  20. J.I. Byun, J.Y. Yun, A calibration transmission method to determine the gamma-ray linear attenuation coefficient without a collimator. Appl. Radiat. Isot. 102, 70–73 (2015). https://doi.org/10.1016/j.apradiso.2015.05.006

    Article  Google Scholar 

  21. B.S. Sidhu, A.S. Dhaliwal, K.S. Mann, K.S. Kahlon, Simplified two media method: a modified approach for measuring linear attenuation coefficient of odd shaped archaeological samples of unknown thickness. Appl. Radiat. Isot. 69, 1516–1520 (2011). https://doi.org/10.1016/j.apradiso.2011.06.007

    Article  Google Scholar 

  22. J. Van Dyk, Broad beam attenuation of cobalt-60 gamma rays and 6-, 18-, and 25-MV X-rays by lead. Med. Phys. 13, 105–110 (1986). https://doi.org/10.1118/1.595929

    Article  Google Scholar 

  23. A.M. Zoulfakar, A.M. Abdel-Ghany, T.Z. Abou-Elnasr, A.G. Mostafa, S.M. Salem, H.H. El-Bahnaswy, Effect of antimony-oxide on the shielding properties of some sodium–boro silicate glasses. Appl. Radiat. Isot. 127, 269–274 (2017). https://doi.org/10.1016/j.apradiso.2017.05.007

    Article  Google Scholar 

  24. M.F.M. Yusof, P.N.K. Abd Hamid, Abd.A. Tajuddin, R.H.S. Bauk, N.M. Isa, M.J.Md. Isa. Mass attenuation coefficient of tannin-added Rhizophora spp. particleboards at 16.59–25.56 keV photons, and 137Cs and 60Co gamma energies. Radiol. Phys. Technol. 10, 331–339 (2017). https://doi.org/10.1007/s12194-017-0408-3

    Article  Google Scholar 

  25. B. Mavi, F. Gurbuz, H. Ciftci, I. Akkurt, Shielding property of natural biomass against gamma rays. Int. J. Phytorem. 16, 247–256 (2014). https://doi.org/10.1080/15226514.2013.773276

    Article  Google Scholar 

  26. P. Kaur, K.J. Singh, S. Thakur, P. Singh, B.S. Bajwa, Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 206, 367–377 (2018). https://doi.org/10.1016/j.saa.2018.08.038

    Article  Google Scholar 

  27. H.C. Manjunatha, L. Seenappa, B.M. Chandrika, K.N. Sridhar, Gamma, X-ray and neutron shielding parameters for the Al-based glassy alloys. Appl. Radiat. Isot. 139, 187–194 (2018). https://doi.org/10.1016/j.apradiso.2018.05.014

    Article  Google Scholar 

  28. K.S. Mann, J. Singla, V. Kumar, G.S. Sidhu, Verification of some building materials as gamma-ray shielding. Radiat. Prot. Dosim. 151, 183–195 (2012). https://doi.org/10.1093/rpd/ncr455

    Article  Google Scholar 

  29. N. Damla, H. Baltas, A. Celik, E. Kiris, U. Cevik, Calculation of radiation attenuation coefficient, effective atomic numbers and electron densities for some building materials. Radiat. Prot. Dosim. 150, 541–549 (2012). https://doi.org/10.1093/rpd/ncr432

    Article  Google Scholar 

  30. M.S. Al-Masri, M. Hasan, A. Al-Hamwi, Y. Amin, A.W. Doubal, Mass attenuation coefficients of soil and sediment samples using gamma energies from 46.5 to 1332 keV. J. Environ. Radioactiv. 116, 28–33 (2013). https://doi.org/10.1016/j.jenvrad.2012.09.008

    Article  Google Scholar 

  31. D. Demir, A. Ün, M. Özgül, Y. Sahin, Determination of photon attenuation coefficient, porosity and field capacity of soil by gamma-ray transmission for 60, 356 and 662 keV gamma rays. Appl. Radiat. Isot. 66, 1834–1837 (2008). https://doi.org/10.1016/j.apradiso.2008.04.023

    Article  Google Scholar 

  32. S. Ghosh, M.K. Das, Attenuation coefficients and absorbed gamma radiation energy of different varieties of potato, mango and prawn at different storage time and physiological condition. Food Chem. 145, 694–700 (2014). https://doi.org/10.1016/j.foodchem.2013.08.080

    Article  Google Scholar 

  33. F. Glenn, Knoll, Radiation Detection and Measurement, 3rd edn. (Wiley, New York, 2000), pp. 308–312

    Google Scholar 

  34. S. Agostinelli, J. Allison, K. Amako et al., Geant4-simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao-Long Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11475013, 11975040 and U1832130).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, XD., Zhang, GL., Xu, SP. et al. Attenuation coefficients of gamma and X-rays passing through six materials. NUCL SCI TECH 31, 3 (2020). https://doi.org/10.1007/s41365-019-0717-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0717-9

Keywords

Navigation