Skip to main content
Log in

New status of the infrared beamlines at SSRF

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

There are two infrared beamlines at the Shanghai synchrotron radiation facility (SSRF)—BL01B and BL06B. BL01B was the first infrared beamline of the National Facility for Protein Science in Shanghai at SSRF, which is dedicated to synchrotron infrared microspectroscopy. It utilizes bending magnet radiation and edge radiation as light sources. Diffraction-limited spatial resolution is reached in the infrared microspectroscopy experiment. BL01B has been in operation for approximately five years since it opened in January 2015. In the past few years, many meaningful results have been published by user groups from various disciplines, such as biomacromolecule materials and pharmaceutical, environmental, and biomedical sciences. In addition, a new infrared beamline station BL06B is under construction, which is optimized for the mid-infrared and far-infrared band. BL06B is equipped with a vacuum-type Fourier transform infrared spectrometer, infrared microscope, custom long-working-distance infrared microscope, infrared scanning near-field optical microscope, and mid-infrared Mueller ellipsometer. The purpose is to serve experiments with high vacuum requirements and spatial resolution experiments, as well as those that are in situ and time-sensitive, such as high-pressure and atomic force microscopy infrared experiments. The station can be used for research in biomaterials, pharmacy, geophysics, nanotechnology, and semiconductor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.C. Martin, U. Schade, P. Lerch et al., Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy. TrAC, Trends Anal. Chem. 29, 453–463 (2010). https://doi.org/10.1016/j.trac.2010.03.002

    Article  Google Scholar 

  2. P. Dumas, F. Polack, B. Lagarde et al., Synchrotron infrared microscopy at the French synchrotron facility SOLEIL. Infrared Phys. Technol. 49, 152–160 (2006). https://doi.org/10.1016/j.infrared.2006.01.030

    Article  Google Scholar 

  3. D. Creagh, J. Mckinlay, P. Dumas, The design of the infrared beamline at the Australian synchrotron. Vib. Spectrosc. 75, 1995–1999 (2006). https://doi.org/10.1016/j.vibspec.2006.02.009

    Article  Google Scholar 

  4. H.Y. Holman, H.A. Bechtel, Z. Hao et al., Synchrotron IR spectromicroscopy: chemistry of living cells. Anal. Chem. 82, 8757–8765 (2010). https://doi.org/10.1021/ac100991d

    Article  Google Scholar 

  5. M.H. Jiang, X. Yang, H.J. Xu et al., Shanghai synchrotron radiation facility. Chin. Sci. Bull. 54, 4171–4181 (2009). https://doi.org/10.1007/s11434-009-0689-y

    Article  Google Scholar 

  6. T. Ji, Y.J. Tong, H.C. Zhu et al., The status of the first infrared beamline at Shanghai synchrotron radiation facility. Nucl. Instrum. Methods A 788, 116–121 (2015). https://doi.org/10.1016/j.nima.2015.03.080

    Article  Google Scholar 

  7. T. Scarvie, N. Andresen, K. Baptiste et al., Noise reduction efforts for the ALS infrared beamlines. Infrared Phys. Technol. 45, 403–408 (2004). https://doi.org/10.1016/j.infrared.2004.01.009

    Article  Google Scholar 

  8. Z. Zhang, M. Chen, Y. Tong et al., Performance of the infrared microspectroscopy station at SSRF. Infrared Phys. Technol. 67, 521–5250 (2014). https://doi.org/10.1016/j.infrared.2014.09.015

    Article  Google Scholar 

  9. M.J. Baker, J. Trevisan, P. Bassan et al., Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771–1791 (2014). https://doi.org/10.1038/nprot.2014.110

    Article  Google Scholar 

  10. Y.J. Tong, M. Chen, T. Ji et al., A system and a method of eliminating the effect of top-up mode on the synchrotron infrared beamline. China. CN 104390704. 2016-05-11. (in Chinese)

  11. H.C. Zhu, Y.J. Tong, T. Ji et al., Elimination technology of noise introduced by top-up injection in synchrotron radiation infrared beamline. J. Infrared Millim Waves 37, 251–256 (2018). https://doi.org/10.11972/j.issn.1001-9014.2018.02.019 (in Chinese)

    Article  Google Scholar 

  12. H.C. Zhu, Y.J. Tong, T. Ji et al., Optimized design for synchrotron radiation infrared beamline with small extraction angle. Acta Opt. Sin. 36, 1122002 (2016). https://doi.org/10.3788/AOS201636.1122002

    Article  Google Scholar 

  13. A. Dazzi, R. Prazeres, F. Glotin et al., Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 30, 2388–2390 (2005). https://doi.org/10.1364/OL.30.002388

    Article  Google Scholar 

  14. J. Kircher, R. Henn, M. Cardona et al., Far-infrared ellipsometry using synchrotron radiation. J. Opt. Soc. Am. B 14, 705–712 (1997). https://doi.org/10.1364/JOSAB.14.000705

    Article  Google Scholar 

  15. X. Zhou, J. Zhong, J. Dong et al., The BL01B1 infrared beamline at Shanghai synchrotron radiation facility. Infrared Phys. Technol. 94, 250–254 (2018). https://doi.org/10.1016/j.infrared.2018.09.013

    Article  Google Scholar 

  16. G. Fang, Y. Tang, Z. Qi et al., Precise correlation of macroscopic mechanical properties and microscopic structures of animal silks—using Antheraea pernyi silkworm silk as an example. J. Mater. Chem. B 530, 6042–6048 (2017). https://doi.org/10.1039/C7TB01638G

    Article  Google Scholar 

  17. L. Wu, X.Z. Yin, Z. Guo et al., Hydration induced material transfer in membranes of osmotic pump tablets measured by synchrotron radiation based FTIR. Eur. J. Pharm. Sci. 84, 132–138 (2016). https://doi.org/10.1016/j.ejps.2016.01.020

    Article  Google Scholar 

  18. M. Wang, X. Lu, X. Yin et al., Synchrotron radiation-based Fourier-transform infrared spectromicroscopy for characterization of the protein/peptide distribution in single microspheres. Acta Pharm. Sin. B 53, 270–276 (2015). https://doi.org/10.1016/j.apsb.2015.03.008

    Article  Google Scholar 

  19. F.S. Sun, M.L. Polizzotto, D. Guan et al., Exploring the interactions and binding sites between Cd and functional groups in soil using two-dimensional correlation spectroscopy and synchrotron radiation based spectromicroscopies. J. Hazard. Mater. 326, 18–25 (2017). https://doi.org/10.1016/j.jhazmat.2016.12.019

    Article  Google Scholar 

  20. Z.X. Liu, Y.Z. Tang, F. Chen et al., Synchrotron FTIR microspectroscopy reveals early adipogenic differentiation of human mesenchymal stem cells at single-cell level. Biochem. Biophys. Res. Commun. 478, 1286–1291 (2016). https://doi.org/10.1016/j.bbrc.2016.08.112

    Article  Google Scholar 

  21. L.P. Kong, G. Liu, J. Gong et al., Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites. Proc. Natl. Acad. Sci. USA 113, 8910–8915 (2016). https://doi.org/10.1073/pnas.1609030113

    Article  Google Scholar 

  22. G. Liu, J. Gong, L.P. Kong et al., Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing. Proc. Natl. Acad. Sci. USA 115, 8076–8081 (2018). https://doi.org/10.1073/pnas.1809167115

    Article  Google Scholar 

  23. W. Zhang, C. Ye, K. Zheng et al., Tensan silk inspired hierarchical fibers for smart textile applications. ACS Nano 12, 6968–6977 (2018). https://doi.org/10.1021/acsnano.8b02430

    Article  Google Scholar 

  24. Y. Wang, J. Wen, B. Peng et al., Understanding the mechanical properties and structure transition of Antheraea pernyi silk fibre induced by its contraction. Biomacromolecules 19, 1999–2006 (2018). https://doi.org/10.1021/acs.biomac.7b01691

    Article  Google Scholar 

  25. Q. Liu, X. Wang, X. Tan, X. Xie et al., A strategy for improving the mechanical properties of silk fiber by directly injection of ferric ions into silkworm. Mater. Des. 146, 134–141 (2018). https://doi.org/10.1016/j.matdes.2018.03.005

    Article  Google Scholar 

  26. K. Zheng, J. Zhong, Z. Qi et al., Isolation of silk mesostructures for electronic and environmental applications. Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201806380

    Article  Google Scholar 

  27. P. Singh, X. Ren, Y. He et al., Fabrication of β-cyclodextrin and sialic acid copolymer by single pot reaction to site specific drug delivery. Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.11.011

    Article  Google Scholar 

  28. P. Singh, X. Ren, T. Guo et al., Biofunctionalization of β-cyclodextrin nanosponges using cholesterol. Carbohydr. Polym. 190, 23–30 (2018). https://doi.org/10.1016/j.carbpol.2018.02.044

    Article  Google Scholar 

  29. Y. He, W. Zhang, T. Guo et al., Drug nanoclusters formed in confined nano-cages of CD-MOF: dramatic enhancement of solubility and bioavailability of azilsartan. Acta. Pharm. Sin. B 9, 97–106 (2018). https://doi.org/10.1016/j.apsb.2018.09.003

    Article  Google Scholar 

  30. J. Xu, L. Wu, T. Guo et al., A “Ship-in-a-Bottle” strategy to create folic acid nanoclusters inside the nanocages of γ-cyclodextrin metal-organic frameworks. Int. J. Pharm. 556, 89–96 (2019). https://doi.org/10.1016/j.ijpharm.2018.11.074

    Article  Google Scholar 

  31. J. Xiao, Y. Wen, G. Yu et al., Strategy for microscale characterization of soil mineral-organic associations by synchrotron-radiation-based FTIR technology. Soil Sci. Soc. Am. J. 82, 1583–1591 (2018). https://doi.org/10.2136/sssaj2018.05.0211

    Article  Google Scholar 

  32. F.S. Sun, G.H. Yu, M.L. Polizzotto et al., Toward understanding the binding of Zn in soils by two-dimensional correlation spectroscopy and synchrotron-radiation-based spectromicroscopies. Geoderma 337, 238–245 (2019). https://doi.org/10.1016/j.geoderma.2018.09.032

    Article  Google Scholar 

  33. H.Y. Du, G.H. Yu, F.S. Sun et al., Iron minerals inhibit the growth of Pseudomonas brassicacearum J12 via a free-radical mechanism: implications for soil carbon storage. Biogeosciences 16, 1433–1445 (2019). https://doi.org/10.5194/bg-16-1433-2019

    Article  Google Scholar 

  34. J. Xiao, Y.L. Wen, S. Dou et al., A new strategy for assessing the binding microenvironments in intact soil microaggregates. Soil Tillage Res. 189, 123–130 (2019). https://doi.org/10.1016/j.still.2019.01.008

    Article  Google Scholar 

  35. Y.C. Zhou, C. Chen, Z. Guo et al., SR-FTIR as a tool for quantitative mapping of the content and distribution of extracellular matrix in decellularized book-shape bioscaffolds. BMC Musculoskelet. Dis. 19, 220 (2018). https://doi.org/10.1186/s12891-018-2149-9

    Article  Google Scholar 

  36. C. Chen, F. Liu, Y. Tang et al., Book-shaped acellular fibrocartilage scaffold with cell-loading capability and chondrogenic inducibility for tissue-engineered fibrocartilage and bone–tendon healing. ACS Appl. Mater. Interfaces. 113, 2891–2907 (2019). https://doi.org/10.1021/acsami.8b20563

    Article  Google Scholar 

  37. X. Wang, X. Wang, M. Wang et al., Probing adsorption behaviors of BSA onto chiral surfaces of nanoparticles. Small 14, 1703982 (2018). https://doi.org/10.1002/smll.201703982

    Article  Google Scholar 

  38. Macro to Micro, Examining Architectural Finishes (Archetype, London, 2018), ISBN: 9781909492608

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Zhao Tang or Min Chen.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. U1732130, U1632273, 11505267, and 11605281).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, XJ., Zhu, HC., Zhong, JJ. et al. New status of the infrared beamlines at SSRF. NUCL SCI TECH 30, 182 (2019). https://doi.org/10.1007/s41365-019-0696-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0696-x

Keywords

Navigation