Skip to main content
Log in

Isothermal, kinetic, and thermodynamic studies for solid-phase extraction of uranium (VI) via hydrazine-impregnated carbon-based material as efficient adsorbent

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The current study describes the application of a new extraction method for efficient uranium adsorption via cost-effective hydrazine-impregnated activated carbon. Various experimental parameters such as time, adsorbent weight, temperature (°C), and uranium concentration were thoroughly investigated. The synthesized adsorbent was characterized via X-ray diffraction, Fourier transformation infrared spectroscopy (FT-IR), scanning electron microscopy, and thermogravimetric analysis. The results showed 86% uranium extraction under optimized conditions (20% P2O5 at 25 °C, 120 min). The obtained findings fit well with thermodynamic and isothermal (Langmuir and Freundlich isotherms) models and pseudo second-order kinetics. In thermodynamic studies, the negative sign of (∆G°) specified the spontaneity of process, the negative sign of (∆H°) revealed endothermicity, and the positive sign of (∆S°) showed high randomness after adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Yang, Q. Liu, J. Liu et al., Highly efficient immobilization of uranium (VI) from aqueous solution by phosphonate-functionalized dendritic fibrous nanosilica (DFNS). J. Hazard. Mater. 363, 248–257 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.062

    Article  Google Scholar 

  2. F. Hameed, Hazardous effects of cadmium contaminated water on biological characteristics of fish; a review. RHAZES: Green Appl. Chem. 6, 1–10 (2019)

    MathSciNet  Google Scholar 

  3. R. Sanghani, Novel technique for purification of fertilizer phosphoric acid with simultaneous uranium extraction. Procedia Eng. 83, 225–232 (2014). https://doi.org/10.1016/j.proeng.2014.09.042

    Article  Google Scholar 

  4. W. Zou, L. Zhao, R. Han, Removal of uranium (VI) by fixed bed ion-exchange column using natural zeolite coated with manganese oxide. Chin. J. Chem. Eng. 17(4), 585–593 (2009). https://doi.org/10.1016/s1004-9541(08)60248-7

    Article  Google Scholar 

  5. J. Li, L. Zhang, J. Peng et al., Removal of uranium from uranium plant wastewater using zero-valent iron in an ultrasonic field. Nucl. Eng. Technol. 48(3), 744–750 (2016). https://doi.org/10.1016/j.net.2016.01.021

    Article  Google Scholar 

  6. R. Han, W. Zou, Y. Wang et al., Removal of uranium (VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. J. Environ. Radioact. 93(3), 127–143 (2007). https://doi.org/10.1016/j.jenvrad.2006.12.003

    Article  Google Scholar 

  7. S. Gabriel, A. Baschwitz, G. Mathonniere et al., A critical assessment of global uranium resources, including uranium in phosphate rocks, and the possible impact of uranium shortages on nuclear power fleets. Ann. Nucl. Energy 58, 13–220 (2013). https://doi.org/10.1016/j.anucene.2013.03.010

    Article  Google Scholar 

  8. M.A. Mousa, H.S. Gado, M.M.G. Abd-El Fattah et al., Removal of uranium from crude phosphoric acid by precipitation technique. Arab J. Nucl. Sci. Appl. 46, 38–47 (2013)

    Google Scholar 

  9. A. Leydier, G. Arrachart, T. Raphael et al., Recovery of uranium (VI) from concentrated phosphoric acid using bifunctional reagents. Hydrometallurgy 171, 262–266 (2017). https://doi.org/10.1016/j.hydromet.2017.05.008

    Article  Google Scholar 

  10. N.T. El-Hazek, M.S. El-Sayed, Direct uranium extraction from dihydrate and hemi-dihydrate wet process phosphoric acids by liquid emulsion membrane. J. Radioanal. Nucl. Chem. 257, 347–352 (2003)

    Article  Google Scholar 

  11. M.M. Aly, M.A. Mousa, M.H. Taha et al., Kinetics and thermodynamics of uranium adsorption from commercial di-hydrate phosphoric acid using D2EHPA-impregnated charcoal. Arab J. Nucl. Sci. Appl. 46, 29–37 (2013)

    Google Scholar 

  12. H.F. Ali, M.M. Ali, M.H. Taha et al., Uranium extraction mechanism from analytical grade phosphoric acid using D2EHPA and synergistic D2EHPA-TOPO mixture. Int. J. Nucl. Energy Sci. Eng. 2, 57–61 (2012)

    Google Scholar 

  13. M. Saeed, M. Munir, M. Nafees et al., Synthesis, characterization and applications of silylation based grafted bentonite for the removal of Sudan dyes: isothermal, kinetic and thermodynamic studies. Microporous Mesoporous Mater. 291, 109697 (2020). https://doi.org/10.1016/j.micromeso.2019.109697

    Article  Google Scholar 

  14. A.M. Masoud, M. Saeed, M.H. Taha et al., Uranium adsorption from Bahariya Oasis leach liquor via TOPO impregnated bentonite material; Isothermal, kinetic and thermodynamic studies. Egypt. J. Chem. (2019). https://doi.org/10.21608/EJCHEM.2019.13638.1843

    Article  Google Scholar 

  15. A.M.A. El Naggar, M.M. Ali, S.A. Abdel Maksoud et al., Waste generated bio-char supported co-nanoparticles of nickel and cobalt oxides for efficient adsorption of uranium and organic pollutants from industrial phosphoric acid. J. Radioanal. Nucl. Chem. 320(3), 741–755 (2019)

    Article  Google Scholar 

  16. J.P. McKinley, J.M. Zachara, S.C. Smith et al., The influence of uranyl hydrolysis and multiple site-binding reactions on adsorption of U (VI) to montmorillonite. Clays Clay Miner. 43(5), 586–598 (1995). https://doi.org/10.1346/CCMN.1995.0430508

    Article  Google Scholar 

  17. M.H. Taha, M.M. El-Maadawy, A.E.M. Hussein et al., Uranium sorption from commercial phosphoric acid using kaolinite and metakaolinite. J. Radioanal. Nucl. Chem. 317(2), 685–699 (2018)

    Article  Google Scholar 

  18. S. Aytas, S. Akyil, M. Eral, Adsorption and thermodynamic behavior of uranium on natural zeolite. J. Radioanal. Nucl. Ch. 260(1), 119–125 (2004). https://doi.org/10.1023/B:JRNC.0000027070.25215.92

    Article  Google Scholar 

  19. M. Bonato, K.V. Ragnarsdottir, G.C. Allen, Removal of uranium (VI), lead (II) at the surface of TiO2 nanotubes studied by X-ray photoelectron spectroscopy. Water Air Soil Pollut. 223(7), 3845–3857 (2012). https://doi.org/10.1007/s11270-012-1153-1

    Article  Google Scholar 

  20. Z. Guo, Z. Yan, Z. Tao, Sorption of uranyl ions on TiO2: effects of contact time, ionic strength, concentration and humic substance. J. Radioanal. Nucl. Ch. 261(1), 157–162 (2004). https://doi.org/10.1023/B:JRNC.0000030950.09543.2e

    Article  Google Scholar 

  21. H. Zhang, Y. Xie, Z. Tao, Sorption of uranyl ions on gibbsite: effects of contact time, pH, ionic strength, concentration and anion of electrolyte. Colloids Surf. A 252(1), 1–5 (2005). https://doi.org/10.1016/j.colsurfa.2004.10.005

    Article  Google Scholar 

  22. G.L. Drisko, M.C. Kimling, N. Scales et al., One-pot preparation and uranyl adsorption properties of hierarchically porous zirconium titanium oxide beads using phase separation processes to vary macropore morphology. Langmuir 26(22), 17581–17588 (2010). https://doi.org/10.1021/la103177h

    Article  Google Scholar 

  23. X. Guo, R. Chen, Q. Liu et al., Graphene oxide and silver ions coassisted zeolitic imidazolate framework for antifouling and uranium enrichment from seawater. ACS Sustain. Chem. Eng. 7(6), 6185–6195 (2019). https://doi.org/10.1021/acssuschemeng.8b06391

    Article  Google Scholar 

  24. J. Zhu, Q. Liu, J. Liu et al., Ni–Mn LDH-decorated 3D Fe-inserted and N-doped carbon framework composites for efficient uranium (VI) removal. Environ. Sci. Nano 5, 467–475 (2018). https://doi.org/10.1039/C7EN01018D

    Article  Google Scholar 

  25. L. Tan, Y. Wang, Q. Liu et al., Enhanced adsorption of uranium (VI) using a three-dimensional layered double hydroxide/graphene hybrid material. Chem. Eng. J. 259, 752–760 (2015). https://doi.org/10.1016/j.cej.2014.08.015

    Article  Google Scholar 

  26. V. Stucker, J.F. Ranville, M. Newman et al., Evaluation and application of anion exchange resins to measure groundwater uranium flux at a former uranium mill site. Water Res. 45(16), 4866–4876 (2011). https://doi.org/10.1016/j.watres.2011.06.030

    Article  Google Scholar 

  27. E. Rosenberg, G. Pinson, R. Tsosie et al., Uranium remediation by ion exchange and sorption methods: a critical review. Johnson Matthey Tech. 60, 59–77 (2016). https://doi.org/10.1595/205651316X690178

    Article  Google Scholar 

  28. B. Gu, Y.-K. Ku, G.M. Brown, Sorption and desorption of perchlorate and U (VI) by strong-base anion-exchange resins. Environ. Sci. Technol. 39(3), 901–907 (2005). https://doi.org/10.1021/es049121f

    Article  Google Scholar 

  29. R. Hoffmann, S. Alvarez, C. Mealli et al., From widely accepted concepts in coordination chemistry to inverted ligand fields. Chem. Rev. 116(14), 8173–8192 (2016). https://doi.org/10.1021/acs.chemrev.6b00251

    Article  Google Scholar 

  30. A. Umar, M. Munir, M. Murtaza et al., Properties and green applications based review on highly efficient deep eutectic solvents. Egypt. J. Chem. (2019). https://doi.org/10.21608/ejchem.2019.12604.1782

    Article  Google Scholar 

  31. R. Buonsanti, D.J. Milliron, Chemistry of doped colloidal nanocrystals. Chem. Mater. 25(8), 1305–1317 (2013). https://doi.org/10.1021/cm304104m

    Article  Google Scholar 

  32. C. Goupil, W. Seifert, K. Zabrocki et al., Thermodynamics of thermoelectric phenomena and applications. Entropy 13(8), 1481–1517 (2011). https://doi.org/10.3390/e13081481

    Article  MATH  Google Scholar 

  33. M. Soleilhavoup, G. Bertrand, Cyclic (alkyl)(amino) carbenes (CAACs): stable carbenes on the rise. Acc. Chem. Res. 48(2), 256–266 (2014). https://doi.org/10.1021/ar5003494

    Article  Google Scholar 

  34. M.C. Kim, G.S. Hwang, R.S. Ruoff, Epoxide reduction with hydrazine on graphene: a first principles study. J. Chem. Phys. 131(6), 064704 (2009). https://doi.org/10.1063/1.3197007

    Article  Google Scholar 

  35. G. Chattopadhyay, P.S. Ray, Hydrazine-hydroquinone complex as an efficient solid phase hydrazine donor: high yield synthesis of luminol and isoluminol. J. Chem. Res. 35(6), 326–328 (2011). https://doi.org/10.3184/174751911X13058077114827

    Article  Google Scholar 

  36. J.A. Dean, Lange’s Handbook of Chemistry. (McGraw-Hill Inc, New york, 1999)

    Google Scholar 

  37. S. Sangeetha, V. Ranjithkumar, S. Rajendran et al., Synthesis, structure and thermal behavior of hydrazine-coordinated copper pyromellitate polymeric complex and dihydrazinium pyromellitate. J. Therm. Anal. Calorim. 124, 1601–1608 (2016). https://doi.org/10.1007/s10973-015-5206-8

    Article  Google Scholar 

  38. M. Gustafsson, A. Fischer, A. Ilyukhin et al., Novel polynuclear nickel (II) complex: hydrazine, sulfato, and hydroxo bridging in an unusual metal hexamer crystal structure and magnetic properties of [Ni6(N2H4)6(SO4)4(OH)2(H2O)8](SO4)(H2O)10. Inorg. Chem. 49(12), 5359–5361 (2010). https://doi.org/10.1021/ic100648c

    Article  Google Scholar 

  39. E.H.P. Bai, S. Vairam, Spectral and thermal studies of transition metal complexes of Acetamido Benzoic Acids with hydrazine. Asian J. Chem. 25(1), 209 (2013)

    Article  Google Scholar 

  40. H.K. James, Y. Miron, H.E. Perlee, Physical and Explosion Characteristics of Hydrazine Nitrate (Bureau of Mines, Washington, DC, 1970)

    Google Scholar 

  41. A.L. Johnson, N. Hollingsworth, A. Kingsley et al., New organocadmium hydrazine adducts and hydrazide complexes. Eur. J. Inorg. Chem. 2012(2), 246–250 (2012). https://doi.org/10.1002/ejic.201100885

    Article  Google Scholar 

  42. B. Raju, B.N. Sivasankar, Spectral, thermal and X-ray studies on some new Bis-hydrazine lanthanide(III) glyoxylates. J. Therm. Anal. Calorim. 94, 289–296 (2008). https://doi.org/10.1007/s10973-007-8953-3

    Article  Google Scholar 

  43. M. Talawar, A.P. Agrawal, J.S. Chhabra et al., Studies on nickel hydrazinium nitrate (NHN) and bis-(5-nitro-2H tetrazolato-N2) tetraamino cobalt (III) perchlorate (BNCP): potential lead-free advanced primary explosives. J. Sci. Ind. Res. 63(8), 677–681 (2004)

    Google Scholar 

  44. L. Vikram, B.N. Sivasankar, New hydrazinium complexes of lanthanide (III) with ethylenediaminetetraacetate: spectral, thermal and XRD studies. Indian J. Chem. Sect. A 45(4), 864–871 (2006)

    Google Scholar 

  45. N.M. Farag, G.O. El-sayed, A.M.A. Morsy et al., Modification of Davies Gray method for uranium determination in phosphoric acid solutions. Int. J. Adv. Res. 3, 323–337 (2015)

    Google Scholar 

  46. R.N. Mendoza, T.I. Saucedo Medina, A. Vera et al., Study of the sorption of Cr(III) with XAD-2 resin impregnated with di-(2, 4, 4 trimethylpentyl) phosphinicacid (Cyanex 272). Solv. Extr. Ion Exch. 18(2), 319–343 (2000). https://doi.org/10.1080/07366290008934684

    Article  Google Scholar 

  47. H. Ullah, M. Nafees, F. Iqbal et al., Adsorption kinetics of malachite green and methylene blue from aqueous solutions using surfactant-modified organoclays. Acta Chim. Slov. 64(2), 449–460 (2017). https://doi.org/10.17344/acsi.2017.3285

    Article  Google Scholar 

  48. M. Munir, M. Ahmad, M. Saeed et al., Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst. Renew. Sustain. Energy Rev. 109, 321–332 (2019). https://doi.org/10.1016/j.rser.2019.04.029

    Article  Google Scholar 

  49. M.T. Akhtar, M. Ahmad, A. Shaheen et al., Comparative study of liquid biodiesel from sterculia foetida (Bottle Tree) using CuO-CeO2 and Fe2O3 nano catalysts. Frontiers in Energy Research 7(4), 1–15 (2019). https://doi.org/10.3389/fenrg.2019.00004

    Article  Google Scholar 

  50. A.E.M. Hussein, A.M.A. Morsy, Uranium recovery from wet-process phosphoric acid by a commercial ceramic product. Arab. J. Chem. 10, S361–S367 (2017). https://doi.org/10.1016/j.arabjc.2012.09.007

    Article  Google Scholar 

  51. Z.-J. Yi, J. Yao, Y.-F. Kuang et al., Uptake of hexavalent uranium from aqueous solutions using coconut husk activated carbon. Desalinat. Water Treat. 57(4), 1749–1755 (2015). https://doi.org/10.1080/19443994.2014.977956

    Article  Google Scholar 

  52. M.T. Uddin, M.S. Islam, M.Z. Abedin, Adsorption of phenol from aqueous solution by water hyacinth ash. ARPN J. Eng. Appl. Sci. 2(2), 11–17 (2007)

    Google Scholar 

  53. C. Kütahyalı, M. Eral, Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation. Sep. Purif. Technol. 40(2), 109–114 (2004). https://doi.org/10.1016/j.seppur.2004.01.011

    Article  Google Scholar 

  54. A. Kausar, H.N. Bhatti, G. MacKinnon, Equilibrium, kinetic and thermodynamic studies on the removal of U (VI) by low cost agricultural waste. Colloids Surf. B 2013(111), 124–133 (2013). https://doi.org/10.1016/j.colsurfb.2013.05.028

    Article  Google Scholar 

  55. M. Solgy, M. Taghizadeh, D. Ghoddocynejad, Adsorption of uranium (VI) from sulphate solutions using Amberlite IRA-402 resin: equilibrium, kinetics and thermodynamics study. Ann. Nucl. Energy 75, 132–138 (2015). https://doi.org/10.1016/j.anucene.2014.08.009

    Article  Google Scholar 

  56. S. Yusan, S.A. Erenturk, Adsorption equilibrium and kinetics of U (VI) on beta type of akaganeite. Desalination 263(1–3), 233–239 (2010). https://doi.org/10.1016/j.desal.2010.06.064

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Elmaadawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morsy, A., Taha, M.H., Saeed, M. et al. Isothermal, kinetic, and thermodynamic studies for solid-phase extraction of uranium (VI) via hydrazine-impregnated carbon-based material as efficient adsorbent. NUCL SCI TECH 30, 167 (2019). https://doi.org/10.1007/s41365-019-0686-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0686-z

Keywords

Navigation