Skip to main content

Advertisement

Log in

Evaluation of CdZnTe spectrometer performance in measuring energy spectra during interventional radiology procedure

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Interventional radiology has been beneficial for patients for over 30 years of age with the combination of diagnostic and therapeutic methods. The radiation affecting occupationally exposed workers should be evaluated by means of the energy spectra and flux of X-rays in the treatment room. The present study aims to obtain the energy spectra of interventional procedures and study the capability of some detectors to evaluate the dose in interventional procedures. These measurements were taken by silicon-drift, CdTe, and CdZnTe detectors. The energy spectra were corrected by the energy-response curve of each detector. The energy-response curves of silicon-drift and CdTe detectors provided by the manufacturers specification were used. The energy response of the CdZnTe detector was measured by \(^{133}\hbox {Ba}\) and \(^{152}\hbox {Eu}\) \(\gamma\) sources. The experimental data were compared with the simulation results, and their perfect agreement provides a way to correct the energy or dose response, which can be used for the personal dosimeter developed by our group. Moreover, the measured energy spectra can be used in individual radiation protection. The present study shows that the CdZnTe detector is a good candidate detector in interventional procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.O. Lopez, L.T. Dauer, R. Loose et al., ICRP publication 139: occupational radiological protection in interventional procedures. Ann. ICRP 47, 2 (2018). https://doi.org/10.1177/0146645317750356

    Article  Google Scholar 

  2. N.G.V. Pinto, D. Braz, M.A. Vallim et al., Radiation exposure in interventional radiology. Nucl. Instrum. Methods A 580, 586–590 (2007). https://doi.org/10.1016/j.nima.2007.05.240

    Article  Google Scholar 

  3. M. Barrera-Rico, X. López-Rendón, S. Vega-Montesino, I. Gamboa-deBuen, Entrance surface dose in cerebral interventional radiology procedures. Radiat. Meas. 71, 342–348 (2014). https://doi.org/10.1016/j.radmeas.2014.04.019

    Article  Google Scholar 

  4. F. O’Foghludha, G.A. Johnson, Voltage waveform effects on output and penetration of W- and Mo-anode mammographic tubes. Phys. Med. Biol. 26, 291–303 (1981). https://doi.org/10.1088/0031-9155/26/2/008/

    Article  Google Scholar 

  5. M. Matsumoto, A. Yamamoto, I. Honda et al., Direct measurement of mammographic X-ray spectra using a CdZnTe detector. Med. Phys. 27, 1490–1502 (2000). https://doi.org/10.1118/1.599015

    Article  Google Scholar 

  6. S. Miyajima, Thin CdTe detector in diagnostic X-ray spectroscopy. Med. Phys. 30, 771–777 (2003). https://doi.org/10.1118/1.1566388

    Article  Google Scholar 

  7. S. Miyajima, K. Imagawa, CdZnTe detector in mammographic X-ray spectroscopy. Phys. Med. Biol. 47, 3959–3972 (2002). https://doi.org/10.1088/0031-9155/47/22/304

    Article  Google Scholar 

  8. P. Lechner, S. Eckbauer, R. Hartmann et al., Silicon drift detectors for high resolution room temperature X-ray spectroscopy. Nucl. Instrum. Methods A 377, 346–351 (1996). https://doi.org/10.1016/0168-9002(96)00210-0

    Article  Google Scholar 

  9. P. Lechner, C. Fiorinic, R. Hartmann et al., Silicon drift detectors for high count rate X-ray spectroscopy at room temperature. Nucl. Instrum. Methods A 458, 281–287 (2001). https://doi.org/10.1016/S0168-9002(00)00872-X

    Article  Google Scholar 

  10. L. Servoli, F. Baldaccini, M. Biasini et al., Active pixel as dosimetric device for interventional radiology. Nucl. Instrum. Methods A 720, 26–30 (2013). https://doi.org/10.1016/j.nima.2012.12.043

    Article  Google Scholar 

  11. L. Servolia, L.A. Solestizia, M. Biasini et al. Real-time wireless personal dosimeter for interventional radiology procedures. Nucl. Instrum. Methods A (2018). https://doi.org/10.1016/j.nima.2018.10.184

    Article  Google Scholar 

  12. S.D. Sordo, L. Abbene, E. Caroli et al., Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors 9(5), 3491–3526 (2009). https://doi.org/10.3390/s90503491

    Article  Google Scholar 

  13. A. Tomal, D.M. Cunha, M. Antoniassi, M.E. Poletti, Response functions of Si(Li), SDD and CdTe detectors for mammographic X-ray spectroscopy. Appl. Radiat. Isot. 70, 1355–1359 (2012). https://doi.org/10.1016/j.apradiso.2011.11.044

    Article  Google Scholar 

  14. X. Chen, H. Han, G. Li, Experimental study on high dose rate response of cadmium zinc telluride detectors to pulsed X-ray. Radiat. Meas. 97, 42–46 (2017). https://doi.org/10.1016/j.radmeas.2016.12.015

    Article  Google Scholar 

  15. Website of X-123SDD Complete X-Ray Spectrometer with Silicon Drift Detector (SDD)

  16. Website of X-123CdTe Complete X-Ray & Gamma Ray Spectrometer

  17. Website of Imdetec Co., LTD

  18. S. Agostinelli, J. Allison, K. Amako et al., Geant4: simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  19. R. Brun, F. Rademakers, ROOT: an object oriented data analysis framework. Nucl. Instrum. Methods A 389, 81–86 (1997). https://doi.org/10.1016/S0168-9002(97)00048-X

    Article  Google Scholar 

  20. G.L. Zhang, G.X. Zhang, S.P. Hu et al., One-neutron stripping processes to excited states of \(^{90}\text{ Y }\) in the \(^{89}\text{ Y }\)(\(^6\text{ Li }\), \(^5\text{ Li }\))\(^{90}\text{ Y }^*\) reaction. Phys. Rev. C 97, 014611 (2018). https://doi.org/10.1103/PhysRevC.97.014611

    Article  Google Scholar 

  21. M.J. Martin, Nuclear Data Sheets 114, 1497–1847 (2013). https://doi.org/10.1016/j.nds.2013.11.001

    Article  Google Scholar 

  22. Yu. Khazov, A. Rodionov, F.G. Kondev, Nuclear Data Sheets 112, 855–1113 (2011). https://doi.org/10.1016/j.nds.2011.03.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Wei Qu.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11705123), Natural Science Foundation of Jiangsu Province (No. BK20160306), China Postdoctoral Science Foundation (No. 2016M591911), and the Project of the State Key Laboratory of Radiation Medicine and Protection, Soochow University (No. GZN1201801).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, L., Chen, L., Yang, CP. et al. Evaluation of CdZnTe spectrometer performance in measuring energy spectra during interventional radiology procedure. NUCL SCI TECH 30, 137 (2019). https://doi.org/10.1007/s41365-019-0661-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0661-8

Keywords

Navigation