Skip to main content
Log in

Light and heavy clusters in warm stellar matter

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Light and heavy clusters are calculated for warm stellar matter in the framework of relativistic mean-field models, in the single-nucleus approximation. The cluster abundances are determined from the minimization of the free energy. In-medium effects of light cluster properties are included by introducing an explicit binding energy shift analytically calculated in the Thomas–Fermi approximation, and the coupling constants are fixed by imposing that the virial limit at low density is recovered. The resulting light cluster abundances come out to be in reasonable agreement with constraints at higher density coming from heavy-ion collision data. Some comparisons with microscopic calculations are also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.J. Horowitz, A. Schwenk, Cluster formation and the virial equation of state of low-density nuclear matter. Nucl. Phys. A 776, 55–79 (2006). https://doi.org/10.1016/j.nuclphysa.2006.05.009

    Article  Google Scholar 

  2. S. Typel, G. Röpke, T. Klähn et al., Composition and thermodynamics of nuclear matter with light clusters. Phys. Rev. C 81, 015803 (2010). https://doi.org/10.1103/PhysRevC.81.015803

    Article  Google Scholar 

  3. S.S. Avancini, C.C. Barros Jr., L. Brito et al., Light clusters in nuclear matter and the “pasta” phase. Phys. Rev. C 85, 035806 (2012). https://doi.org/10.1103/PhysRevC.85.035806

    Article  Google Scholar 

  4. A. Raduta, F. Gulminelli, Statistical description of complex nuclear phases in supernovae and proto-neutron stars. Phys. Rev. C 82, 065801 (2010). https://doi.org/10.1103/PhysRevC.82.065801

    Article  Google Scholar 

  5. M. Hempel, J. Schaffner-Bielich, A statistical model for a complete supernova equation of state. Nucl. Phys. A 837, 210–254 (2010). https://doi.org/10.1016/j.nuclphysa.2010.02.010

    Article  Google Scholar 

  6. M. Ferreira, C. Providência, Description of light clusters in relativistic nuclear models. Phys. Rev. C 85, 055811 (2012). https://doi.org/10.1103/PhysRevC.85.055811

    Article  Google Scholar 

  7. D.G. Ravenhall, C.J. Pethick, J.R. Wilson, Structure of matter below nuclear saturation density. Phys. Rev. Lett. 50, 2066 (1983). https://doi.org/10.1103/PhysRevLett.50.2066

    Article  Google Scholar 

  8. C.J. Horowitz, M.A. Pérez-García, D.K. Berry et al., Dynamical response of the nuclear “pasta” in neutron star crusts. Phys. Rev. C 72, 035801 (2005). https://doi.org/10.1103/PhysRevC.72.035801

    Article  Google Scholar 

  9. T. Maruyama, T. Tatsumi, D. Voskresensky et al., Nuclear “pasta” structures and the charge screening effect. Phys. Rev. C 72, 015802 (2005). https://doi.org/10.1103/PhysRevC.72.015802

    Article  Google Scholar 

  10. G. Watanabe, T. Maruyama, K. Sato et al., Simulation of transitions between “Pasta” phases in dense matter. Phys. Rev. Lett. 94, 031101 (2005). https://doi.org/10.1103/PhysRevLett.94.031101

    Article  Google Scholar 

  11. H. Sonoda, G. Watanabe, K. Sato, et al., Erratum: Phase diagram of nuclear “pasta” and its uncertainties in supernova cores [Phys. Rev. C 77, 035806 (2008)]. Phys. Rev. C 81, 049902 (2010). https://doi.org/10.1103/PhysRevC.81.049902

  12. H. Pais, J.R. Stone, Exploring the nuclear pasta phase in core-collapse supernova matter. Phys. Rev. Lett. 109, 151101 (2012). https://doi.org/10.1103/PhysRevLett.109.151101

    Article  Google Scholar 

  13. A.S. Schneider, D.K. Berry, C.M. Briggs et al., Nuclear “waffles”. Phys. Rev. C 90, 055805 (2014). https://doi.org/10.1103/PhysRevC.90.055805

    Article  Google Scholar 

  14. F. Grill, H. Pais, C. Providência et al., Equation of state and thickness of the inner crust of neutron stars. Phys. Rev. C 90, 045803 (2014). https://doi.org/10.1103/PhysRevC.90.045803

    Article  Google Scholar 

  15. M. Oertel, M. Hempel, T. Klähn et al., Equations of state for supernovae and compact stars. Rev. Mod. Phys. 89, 015007 (2017). https://doi.org/10.1103/RevModPhys.89.015007

    Article  Google Scholar 

  16. N.K. Glendenning, in Compact Stars: Nuclear Physics, Particle Physics, and General Relativity, ed. by N.K. Glendenning (Springer, New York, 2000)

  17. P. Haensel, A. Y. Potekhin, D. G. Yakovlev, in Neutron Stars 1: Equation of State and Structure, ed. by P. Haensel, A.Y. Potekhin, D.G. Yakovlev (Springer, New York, 2007)

  18. B.P. Abbott et al., LIGO and Virgo Collab., GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett 119, 141101 (2017). https://doi.org/10.1103/PhysRevLett.119.141101

    Article  Google Scholar 

  19. A. Arcones, G. Martínez-Pinedo, E. O’Connor et al., Influence of light nuclei on neutrino-driven supernova outflows. Phys. Rev. C 78, 015806 (2008). https://doi.org/10.1103/PhysRevC.78.015806

    Article  Google Scholar 

  20. S. Furusawa, H. Nagakura, K. Sumiyoshi et al., The influence of inelastic neutrino reactions with light nuclei on the standing accretion shock instability in core-collapse supernovae. Astrophys. J. 774, 78 (2013). https://doi.org/10.1088/0004-637X/774/1/78

    Article  Google Scholar 

  21. S. Furusawa, K. Sumiyoshi, S. Yamada et al., Supernova equations of state including full nuclear ensemble with in-medium effects. Nucl. Phys. A 957, 188–207 (2017). https://doi.org/10.1016/j.nuclphysa.2016.09.002

    Article  Google Scholar 

  22. H. Pais, F. Gulminelli, C. Providência et al., Light clusters in warm stellar matter: explicit mass shifts and universal cluster-meson couplings. Phys. Rev. C 97, 045805 (2018). https://doi.org/10.1103/PhysRevC.97.045805

    Article  Google Scholar 

  23. M. Dutra, O. Lourenço, S.S. Avancini et al., Relativistic mean-field hadronic models under nuclear matter constraints. Phys. Rev. C 90, 055203 (2014). https://doi.org/10.1103/PhysRevC.90.055203

    Article  Google Scholar 

  24. H. Pais, F. Gulminelli, C. Providência, G. Röpke (in preparation)

  25. C.J. Horowitz, A. Schwenk, The virial equation of state of low-density neutron matter. Phys. Lett. B 638, 153–159 (2006). https://doi.org/10.1016/j.physletb.2006.05.055

    Article  Google Scholar 

  26. M.D. Voskresenskaya, S. Typel, Constraining mean-field models of the nuclear matter equation of state at low densities. Nucl. Phys. A 887, 42–76 (2012). https://doi.org/10.1016/j.nuclphysa.2012.05.006

    Article  Google Scholar 

  27. M. Hempel, J. Schaffner-Bielich, S. Typel et al., Light clusters in nuclear matter: excluded volume versus quantum many-body approaches. Phys. Rev. C 84, 055804 (2011). https://doi.org/10.1103/PhysRevC.84.055804

    Article  Google Scholar 

  28. H. Pais, S. Typel, in Comparison of Equation of State Models with Different Cluster Dissolution Mechanisms in Nuclear Particle Correlations and Cluster Physics, ed. by W.U. Schröder (Schröder, World Scientific, 2017). arXiv:1612.07022

  29. F. Gulminelli, AdR Raduta, Unified treatment of subsaturation stellar matter at zero and finite temperature. Phys. Rev. C 92, 055803 (2015). https://doi.org/10.1103/PhysRevC.92.055803

    Article  Google Scholar 

  30. H. Pais, S. Chiacchiera, C. Providência, Light clusters, pasta phases, and phase transitions in core-collapse supernova matter. Phys. Rev. C 91, 055801 (2015). https://doi.org/10.1103/PhysRevC.91.055801

    Article  Google Scholar 

  31. L. Qin, K. Hagel, R. Wada et al., Laboratory tests of low density astrophysical nuclear equations of state. Phys. Rev. Lett. 108, 172701 (2012). https://doi.org/10.1103/PhysRevLett.108.172701

    Article  Google Scholar 

  32. B.G. Todd-Rutel, J. Piekarewicz, Neutron-rich nuclei and neutron stars: a new accurately calibrated interaction for the study of neutron-rich matter. Phys. Rev. Lett. 95, 122501 (2005). https://doi.org/10.1103/PhysRevLett.95.122501

    Article  Google Scholar 

  33. G. Röpke, Nuclear matter equation of state including two-, three-, and four-nucleon correlations. Phys. Rev. C 92, 054001 (2015). https://doi.org/10.1103/PhysRevC.92.054001

    Article  Google Scholar 

  34. G. Röpke, Light nuclei quasiparticle energy shifts in hot and dense nuclear matter. Phys. Rev. C 79, 014002 (2009). https://doi.org/10.1103/PhysRevC.79.014002

    Article  Google Scholar 

  35. S. Typel, G. Röpke, T. Klähn et al., Composition and thermodynamics of nuclear matter with light clusters. Phys. Rev. C 81, 015803 (2010). https://doi.org/10.1103/PhysRevC.81.015803

    Article  Google Scholar 

  36. M. Hempel, K. Hagel, J. Natowitz et al., Constraining supernova equations of state with equilibrium constants from heavy-ion collisions. Phys. Rev. C 91, 045805 (2015). https://doi.org/10.1103/PhysRevC.91.045805

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Pais.

Additional information

This work was partly supported by the FCT (Portugal) Project No. UID/FIS/04564/2016 and by former NewCompStar, COST Action MP1304. H.P. is supported by FCT (Portugal) under Project No. SFRH/BPD/95566/2013. She is very thankful to the Organizers of IWND 2018 for the opportunity to present this work, as well as the financial support received.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pais, H., Gulminelli, F., Providência, C. et al. Light and heavy clusters in warm stellar matter. NUCL SCI TECH 29, 181 (2018). https://doi.org/10.1007/s41365-018-0518-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0518-6

Keywords

Navigation