Skip to main content
Log in

Real-time wide-range neutron flux monitor for thorium-based molten salt reactor

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A novel full-digital real-time neutron flux monitor (NFM) has been developed for thorium-based molten salt reactor (TMSR). The system is based on the high-speed, parallel, and pipeline processing of the field programmable gate array as well as the high-stability controller area network platform. A measurement range of 108 counts per second is achieved with a single fission chamber by utilizing the normalization of the count and Campbell algorithms. With the advantages of using the measurement range, system integrity, and real-time performance, digital NFM has been tested in the Xi’an pulsed reactor fission experiments and was found to exhibit superior experimental performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.M. Ji, M.H. Li, Y. Zou et al., Impact of photoneutrons on reactivity measurements for TMSR-SF1. Nucl. Sci. Technol. 28, 76 (2017). https://doi.org/10.1007/s41365-017-0234-7

    Article  Google Scholar 

  2. J. Yin, Y. Ma, Y. Qian et al., Experimental investigation of the bubble separation route for an axial gas–liquid separator for TMSR. Ann. Nucl. Eng. 97, 1–6 (2016). https://doi.org/10.1016/j.anucene.2016.06.018

    Article  Google Scholar 

  3. L.F. Han, Y.Z. Chen, J. Cai et al., The application of EPICS in TMSR radiation protection and access control system. Nucl. Sci. Technol. 27, 41 (2016). https://doi.org/10.1007/s41365-016-0040-7

    Article  Google Scholar 

  4. C.C. Yin, N. Zhang, Y.P. Li et al., The design of RMT-based IOC redundancy at RCPI experimental platform in TMSR. Nucl. Sci. Technol. 25, 060402 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.060402

    Google Scholar 

  5. S.A. Wender, S. Balestrini, A. Brown et al., A fission ionization detector for neutron flux measurements at a spallation source. Nucl. Instrum. Methods A 336, 226–231 (1993). https://doi.org/10.1016/0168-9002(93)91102-S

    Article  Google Scholar 

  6. J.W. Yang, Q.W. Yang, G.S. Xiao et al., Fusion neutron flux monitor for ITER. Plasma Sci. Technol. 10, 141 (2008). https://doi.org/10.1088/1009-0630/10/2/01

    Article  Google Scholar 

  7. N.P. Hawkes, N.J. Roberts, Digital dual-parameter data acquisition for SP2 hydrogen-filled proportional counters. Radiat. Prot. Dosim. 161, 253–256 (2013). https://doi.org/10.1093/rpd/nct262

    Article  Google Scholar 

  8. S. Pszona, A. Bantsar, P. Tulik et al., Low-level gamma and neutron monitoring based on use of proportional counter filled with 3He in polythene moderator: study of the responses to gamma and neutrons. Radiat. Prot. Dosim. 161, 237–240 (2013). https://doi.org/10.1093/rpd/nct274

    Article  Google Scholar 

  9. A. Taheri, A. Pazirandeh, Measurements of the thermal neutron flux for an accelerator-based photoneutron source. Australas. Phys. Eng. Sci. Med. 39, 857–862 (2016). https://doi.org/10.1007/s13246-016-0477-3

    Article  Google Scholar 

  10. A. Shirley, EMC testing of Korean next generation reactors nuclear instrumentation systems. Trans. Am. Nucl. Soc. 101, 311–312 (2009)

    Google Scholar 

  11. R. Liu, T.H. Zhu et al., Reaction rates in blanket assemblies of a fusion–fission hybrid reactor. Nucl. Sci. Technol. 23, 242 (2012). https://doi.org/10.13538/j.1001-8042/nst.23.242-246

    Google Scholar 

  12. S.P. Li, X.F. Xu, H.R. Cao et al., Dynamic linear calibration method for a wide range neutron flux monitor system in ITER. Nucl. Sci. Technol. 24, 040402 (2013). https://doi.org/10.13538/j.1001-8042/nst.2013.04.002

    Google Scholar 

  13. A.K. Mishra, S.R. Shimjith, T.U. Bhatt et al., Kalman filter-based dynamic compensator for vanadium self powered neutron detectors. IEEE Trans. Nucl. Sci. 61, 1360–1368 (2014). https://doi.org/10.1109/TNS.2014.2321340

    Article  Google Scholar 

  14. Y. Xu, X. Ji, Q. Yang et al., Development of a low-drift integrator system on the HL-2A tokamak. Rev. Sci. Instrum. 87, 023507 (2016). https://doi.org/10.1063/1.4940027

    Article  Google Scholar 

  15. C. Chen, W.W. Fan, Y.H. Pan et al., A multi-channel real-time digital integrator for magnetic diagnostics in HL-2A tokamak. Nucl. Sci. Technol. 27, 14 (2016). https://doi.org/10.1007/s41365-016-0006-9

    Article  Google Scholar 

  16. C. Yuan, Y.P. Li, Y.F. Huang, Simulation study on digital processing of fission chamber output signal. Nucl. Technol. 38, 010401 (2015). https://doi.org/10.11889/j.0253-3219.2015.hjs.38.010401. (in Chinese)

    Google Scholar 

  17. L.P. Wang, X.P. Jiang et al., Calculation and experimental validation of ~ (127) I transmutation rate in Xi’an pulsed reactor. Nucl. Power Eng. 25, 233–236 (2014). https://doi.org/10.3788/hplpb20132501.0233. (in Chinese)

    Google Scholar 

  18. D. Li, W.S. Zhang, X.B. Jiang, Parameter measurement for radiation field of large space neutron irradiation platform in Xi’an pulsed reactor. At. Energy Sci. Technol. 48, 1243–1249 (2014). https://doi.org/10.7538/yzk.2014.48.07.1243. (in Chinese)

    Google Scholar 

  19. B. Rajesh, N. Kariya, M. Ichikawa, Dehydrogenation of cyclohexane over Ni based catalysts supported on activated carbon using spray-pulsed reactor and enhancement in activity by addition of a small amount of Pt. Catal. Lett. 105, 83–87 (2005). https://doi.org/10.1007/s10562-005-8009-x

    Article  Google Scholar 

  20. Z.M. Sergei, Methods, methodologies and formulas for simplified neutronics analyses of fusion reactors. J. Nucl. Sci. Technol. 31, 867–878 (1994). https://doi.org/10.3327/jnst.31.867

    Article  Google Scholar 

  21. H.K. Joo, C.H. Kim et al., A new approach to core-reflector boundary conditions for nodal reactor computations. Nucl. Sci. Eng. 116, 300–312 (1994). https://doi.org/10.13182/NSE94-A18989

    Article  Google Scholar 

  22. R.L. Fleischer, P.B. Price, R.M. Walker, Neutron flux measurement by fission tracks in solids. Nucl. Sci. Eng. 22, 153–156 (1965). https://doi.org/10.13182/NSE65-A20234

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Hao Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11375195 and 11575184) and the National Magnetic Confinement Fusion Energy Development Research (No. 2013GB104003).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Liu, ZH., Chen, C. et al. Real-time wide-range neutron flux monitor for thorium-based molten salt reactor. NUCL SCI TECH 29, 107 (2018). https://doi.org/10.1007/s41365-018-0450-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0450-9

Keywords

Navigation