Skip to main content
Log in

Extraction and structural investigation of jute cellulose nanofibers

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Cellulose nanofibrils (CNFs) are a type of natural nanomaterials extracted from plants and animals that have expanding applications in numerous areas benefiting from their inherent properties of renewability, biodegradability, and sustainability. For energy consumption reduction, CNFs were extracted from raw jute fibers, which were not pretreated in a hot alkali or acid solution, by TEMPO-mediated oxidation. Synchrotron radiation wide-angle scattering was performed to realize the crystallization of the CNF crystallites; Fourier transform infrared spectroscopy, transmission electron microscopy, and field-emission scanning electron microscopy were used to characterize the changes in chemical groups and visualized morphology of CNFs. The simplified preparation and shortened cycle should further help the study of the structure–function relationship of jute CNFs subjected to chemical modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.J. Moon, A. Martini, J. Nairn et al., Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011). https://doi.org/10.1039/c0cs00108b

    Article  Google Scholar 

  2. Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110, 3479–3500 (2010). https://doi.org/10.1021/cr900339w

    Article  Google Scholar 

  3. F. Jiang, A.R. Esker, M. Roman, Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals. Langmuir 26, 17919–17925 (2010). https://doi.org/10.1021/la1028405

    Article  Google Scholar 

  4. M. Iguchi, S. Yamanaka, A. Budhiono, Bacterial cellulose—a masterpiece of nature’s arts. J. Mater. Sci. 35, 261–270 (2000). https://doi.org/10.1023/A:1004775229149

    Article  Google Scholar 

  5. W. Helbert, Y. Nishiyama, T. Okano et al., Molecular imaging ofhalocynthia papillosacellulose. J. Struct. Biol. 124, 42–50 (1998). https://doi.org/10.1006/jsbi.1998.4045

    Article  Google Scholar 

  6. N.-H. Kim, W. Herth, R. Vuong et al., The cellulose system in the cell wall ofMicrasterias. J. Struct. Biol. 117, 195–203 (1996). https://doi.org/10.1006/jsbi.1996.0083

    Article  Google Scholar 

  7. S. Elazzouzi-Hafraoui, Y. Nishiyama, J.-L. Putaux et al., The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9, 57–65 (2007). https://doi.org/10.1021/bm700769p

    Article  Google Scholar 

  8. Y. Habibi, A. Dufresne, Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromol 9, 1974–1980 (2008). https://doi.org/10.1021/bm8001717

    Article  Google Scholar 

  9. N.L. Garcia de Rodriguez, W. Thielemans, A. Dufresne, Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13, 261–270 (2006). https://doi.org/10.1007/s10570-005-9039-7

    Article  Google Scholar 

  10. X. Cao, H. Dong, C.M. Li, New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromol 8, 899–904 (2007). https://doi.org/10.1021/bm0610368

    Article  Google Scholar 

  11. X. Cao et al., Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydr. Polym. 90, 1075–1080 (2012). https://doi.org/10.1016/j.carbpol.2012.06.046

    Article  Google Scholar 

  12. L.Y. Mwaikambo, M.P. Ansell, Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. Appl. Polym. Sci. 84, 2222–2234 (2002). https://doi.org/10.1002/app.10460

    Article  Google Scholar 

  13. A. Bledzki, J. Gassan, Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24, 221–274 (1999). https://doi.org/10.1016/S0079-6700(98)00018-5

    Article  Google Scholar 

  14. J.W. Hearle, W.E. Morton, Physical Properties of Textile Fibres (Elsevier, Amsterdam, 2008)

    Google Scholar 

  15. R.M. Rowell, J.S. Han, J.S. Rowell, Characterization and factors effecting fiber properties. Natural Polymers and Agrofibers Bases Composites. Embrapa Instrumentacao Agropecuaria, P. O. Box 741, Sao Carlos, 13560-970 SP, Brazil, 2000., 2000: 115–134

  16. N. Kasyapi, V. Chaudhary, A.K. Bhowmick, Bionanowhiskers from jute: preparation and characterization. Carbohydr. Polym. 92, 1116–1123 (2013). https://doi.org/10.1016/j.carbpol.2012.10.021

    Article  Google Scholar 

  17. A.E. De Nooy, A.C. Besemer, H. van Bekkum, Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr. Res. 269, 89–98 (1995). https://doi.org/10.1016/0008-6215(94)00343-E

    Article  Google Scholar 

  18. A. Isogai, T. Saito, H. Fukuzumi, TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85 (2011). https://doi.org/10.1039/c0nr00583e

    Article  Google Scholar 

  19. T. Virtanen, K. Svedström, S. Andersson et al., A physico-chemical characterisation of new raw materials for microcrystalline cellulose manufacturing. Cellulose 19, 219–235 (2011). https://doi.org/10.1007/s10570-011-9636-6

    Article  Google Scholar 

  20. P. Rämänen, P.A. Penttilä, K. Svedström et al., The effect of drying method on the properties and nanoscale structure of cellulose whiskers. Cellulose 19, 901–912 (2012). https://doi.org/10.1007/s10570-012-9695-3

    Article  Google Scholar 

  21. F. Xu, Y.-C. Shi, D. Wang, Structural features and changes of lignocellulosic biomass during thermochemical pretreatments: a synchrotron X-ray scattering study on photoperiod-sensitive sorghum. Carbohydr. Polym. 88, 1149–1156 (2012). https://doi.org/10.1016/j.carbpol.2012.01.041

    Article  Google Scholar 

  22. R. Zhou, Q. Xiang, J. Song, A study on displacement of crystalline diffraction peaks in electron-beam irradiated filter paper cellulose. Nuclear Tech. 20, 631–635 (1997). (in Chinese)

    Google Scholar 

  23. K. Leppänen, S. Andersson, M. Torkkeli et al., Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16, 999 (2009). https://doi.org/10.1007/s10570-009-9298-9

    Article  Google Scholar 

  24. F. Carrillo, X. Colom, J.J. Suñol et al., Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur. Polym. J. 40, 2229–2234 (2004). https://doi.org/10.1016/j.eurpolymj.2004.05.003

    Article  Google Scholar 

  25. S.M.L. Rosa, N. Rehman, M.I.G. Miranda et al., Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr. Polym. 87, 1131–1138 (2012). https://doi.org/10.1016/j.carbpol.2011.08.084

    Article  Google Scholar 

  26. J.I. Morán, V.A. Alvarez, V.P. Cyras et al., Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15, 149–159 (2007). https://doi.org/10.1007/s10570-007-9145-9

    Article  Google Scholar 

  27. E. Sinha, S.K. Rout, Effect of neutron irradiation on the structural, mechanical, and thermal properties of jute fiber. J. Appl. Polym. Sci. 110, 413–423 (2008). https://doi.org/10.1002/app.28504

    Article  Google Scholar 

  28. E. Sinha, S. Rout, Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute fibre and its composite. Bull. Mater. Sci. 32, 65–76 (2009). https://doi.org/10.1007/s12034-009-0010-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia-Ran Miao or Hui Li.

Additional information

This work was supported by the National Nature Science Foundation of China (Nos. 11505272, 51773221, U1732123), Youth Innovation Promotion Association CAS (No. 2017308).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, ZX., Miao, XR., Lin, JY. et al. Extraction and structural investigation of jute cellulose nanofibers. NUCL SCI TECH 29, 106 (2018). https://doi.org/10.1007/s41365-018-0433-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0433-x

Keywords

Navigation