Skip to main content
Log in

Methodological study on endogenous calcium absorptivity using rats and 41Ca tracing

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Elemental calcium plays an important role in human physiology. In order to study the relationship between Ca-intake, Ca-chemical formulation, and Ca-absorptivity, a balance experiment using a 41Ca tracer technique in SD rats was conducted to measure the endogenous fecal calcium and true absorption of calcium. Apparent absorption of calcium was measured as a control to the endogenous calcium labeling experiment. These results show that by using 41Ca labeled endogenous calcium in vivo, researchers could obtain the true calcium absorption data without extrinsic labeling. Therefore, the method was not affected by the chemical structure or type of calcium supplement and might be used in evaluating the absorptivity of marketed calcium supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J. Purkiss, M. Welch, S. Doward et al., Capsaicin-stimulated release of substance P from cultured dorsal root ganglion neurons: involvement of two distinct mechanisms. Biochem. Pharmacol. 59, 1403–1406 (2000). https://doi.org/10.1016/S0006-2952(00)00260-4

    Article  Google Scholar 

  2. Y.P. Xu, J.W. Zhang, L. Li et al., Complex regulation of capsaicin on intracellular second messengers by calcium dependent and independent mechanisms in primary sensory neurons. Neurosci. Lett. 517, 30–35 (2012). https://doi.org/10.1016/j.neulet.2012.04.011

    Article  Google Scholar 

  3. J. Wang, Advance in the research of calcium in the prevention and treatment of osteoprosis. Chin J. Clin. Nutr. 12, 213–217 (2004). https://doi.org/10.3760/cma.j.issn.1674-635X.2004.03.016

    Google Scholar 

  4. Z.G. Wang, Preliminary discussion of related problems on supplemental calcium. Adverse Drug React. J. 8, 326–329 (2006). https://doi.org/10.3969/j.issn.1008-5734.2006.05.002. (in Chinese)

    Google Scholar 

  5. M.J. Bolland, P.A. Barber, R.N. Doughty et al., Vascular events in healthy older women receiving calcium supplementation: randomised controlled trial. BMJ 336, 262–266 (2008). https://doi.org/10.1136/bmj.39440.525752.be

    Article  Google Scholar 

  6. M.J. Bolland, A. Avenell, J.A. Baron et al., Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ 341, c3691 (2010). https://doi.org/10.1136/bmj.c3691

    Article  Google Scholar 

  7. M.R. Tadross, I.E. Dick, D.T. Yue, Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel. Cell 133, 1228–1240 (2008). https://doi.org/10.1016/j.cell.2008.05.025

    Article  Google Scholar 

  8. G.N. Farhat, A.B. Newman, K.S. Tyrrell et al., The association of bone mineral density measures with incident cardiovascular disease in older adults. Osteoporosis Int. 18, 999–1008 (2007). https://doi.org/10.1007/s00198-007-0338-8

    Article  Google Scholar 

  9. J.R. Southon, M.S. Bishop, G.J. Kost, 41Ca as a tracer for calcium uptake and deposition in heart tissue during ischemia and reperfusion. Nucl. Instrum. Method B. 92, 89–491 (1994). https://doi.org/10.1016/0168-583X(94)96060-7

    Article  Google Scholar 

  10. H. Gu, S.R. Shi, L.L. Chang et al., Safety evaluation of daidzein in laying hens: part II. Effects on calcium-related metabolism. Food Chem. Toxicol. 55, 689–692 (2013). https://doi.org/10.1016/j.fct.2012.12.064

    Article  Google Scholar 

  11. H.T. Shen, S. Jiang, M. He, Research on analysis methods for calcium absorptivity. Chin J. Osteoporosis Bone Miner Res. 2, 59–64 (2009). https://doi.org/10.3969/j.issn.1674-2591.2009.01.011. (in Chinese)

    Google Scholar 

  12. T. Matsumoto, T. Takano, S. Yamakido et al., Comparison of the effects of eldecalcitol and alfacalcidol on bone and calcium metabolism. J. Steroid Biochem. 121, 261–264 (2010). https://doi.org/10.1016/j.jsbmb.2010.03.035

    Article  Google Scholar 

  13. S.P.H.T. Freeman, B. Beck, J.M. Bierman et al., The study of skeletal calcium metabolism with 41Ca and 45Ca. Nucl. Instrum. Method B. 172, 930–933 (2000). https://doi.org/10.1016/S0168-583X(00)00341-4

    Article  Google Scholar 

  14. C.S. Kovacs, Calcium, phosphorus, and bone metabolism in the fetus and newborn. Early Hum. Dev. 91, 623–628 (2015). https://doi.org/10.1016/j.earlhumdev.2015.08.007

    Article  Google Scholar 

  15. D. Elmore, M.H. Bhattacharyya, N.S. Gibson et al., Calcium-41 as a long-term biological tracer for bone resorption. Nucl. Instrum. Method B. 52, 531–535 (1990). https://doi.org/10.1016/0168-583x(90)90471-6

    Article  Google Scholar 

  16. T.S. Rogers, M.G. Garrod, J.M. Peerson et al., Is bone equally responsive to calcium and vitamin D intake from food vs. supplements? Use of 41calcium tracer kinetic model. Bone Rep. 5, 117–123 (2016). https://doi.org/10.1016/j.bonr.2016.05.001

    Article  Google Scholar 

  17. S.K. Hui, J. Prior, Z. Gelbart et al., A pilot study of the feasibility of long-term human bone balance during perimenopause using a 41Ca tracer. Nucl. Instrum. Method B. 259, 796–800 (2007). https://doi.org/10.1016/j.nimb.2007.02.003

    Article  Google Scholar 

  18. C. Vockenhuber, T.S. König, H.A. Synal et al., Efficient 41Ca measurements for biomedical applications. Nucl. Instrum. Method B. 361, 273–276 (2015). https://doi.org/10.1016/j.nimb.2015.05.014

    Article  Google Scholar 

  19. X.L. Zhao, A.E. Litherland, J. Eliades et al., Partial fragmentation of at low MeV energies and its potential use for 41Ca measurement. Nucl. Instrum. Method B. 294, 369–373 (2013). https://doi.org/10.1016/j.nimb.2012.01.046

    Article  Google Scholar 

  20. L. Dou, M. He, K.J. Dong et al., Preliminary study of 41Ca-AMS measurement in rock samples. Atomic Energy Sci. Technol. 47, 2322–2326 (2013). https://doi.org/10.7538/yzk.2013.47.12.2322. (in Chinese)

    Google Scholar 

  21. H.T. Shen, F.F. Pang, S. Jiang et al., Study on 41Ca-AMS for diagnosis and assessment of cancer bone metastasis in rats. Nucl. Instrum. Method B. 361, 643–648 (2015). https://doi.org/10.1016/j.nimb.2015.05.034

    Article  Google Scholar 

  22. M. He, X.D. Ruan, S.L. Wu et al., 41Ca analysis using CaF in CIAE–AMS system. Nucl. Instrum. Method B. 268, 804–806 (2010). https://doi.org/10.1016/j.nimb.2009.10.035

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank experimentalist Lu Zheng from Beijing Union University for her help with the 41Ca biological tracer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming He.

Additional information

This work was supported by the National Nature Science Foundation of China (No. 11375272).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Dou, L., Wang, XM. et al. Methodological study on endogenous calcium absorptivity using rats and 41Ca tracing. NUCL SCI TECH 29, 56 (2018). https://doi.org/10.1007/s41365-018-0387-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0387-z

Keywords

Navigation