Skip to main content

Advertisement

Log in

Laser test of the prototype of CEE time projection chamber

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A prototype thick-GEM-based cooling storage ring external-target experiment (CEE) time projection chamber (TPC) is constructed and tested with the pulsed ultraviolet laser beams. The results indicate that the prototype TPC has a good performance in three-dimensional track resolution. In X direction the position resolution is about 0.2 mm, and in Y direction the position resolution is about 0.5 mm. The results also determine that the energy resolution is about 5.4%, which achieve the requirements of the CEE experiment and can be used to study the nuclear state equation and the quantum chromo dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.W. Xia, W.L. Zhan, B.W. Wei et al., The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou. Nucl. Instrum. Meth. A 488, 11–25 (2002). https://doi.org/10.1016/S0168-9002(02)00475-8

    Article  Google Scholar 

  2. C.J. Horowitz, E.F. Brown, Y. Kim et al., A way forward in the study of the symm-etry energy: experiment, theory, and observation. J. Phys. G Nucl. Partic. 41, 97 (2014). https://doi.org/10.1088/0954-3899/41/9/093001

    Article  Google Scholar 

  3. B.A. Li, L.W. Chen, C.M. Ko, Recent progress and new challenges in isospin phys-ics with heavy-ion reactions. Phys. Rep. 464, 113–281 (2008). https://doi.org/10.1016/j.physrep.2008.04.005

    Article  Google Scholar 

  4. M.A. Stephanov, Sign of kurtosis near the QCD critical point. Phys. Rev. Lett. 107, 052301 (2011). https://doi.org/10.1103/PhysRevLett.107.052301

    Article  Google Scholar 

  5. L. McLerran, Quarkyonic matter and the revised phase diagram of QCD. Nucl. Phys. A 830, 709c–712c (2009). https://doi.org/10.1016/j.nuclphysa.2009.10.063

    Article  Google Scholar 

  6. A. Andronic, D. Blaschke, P. Braun-Munzinger et al., Hadron production in ultra-relativistic nuclear collisions: quarkyonic matter and a triple point in the phase diagr-am of QCD. Nucl. Phys. A 837, 65–86 (2010). https://doi.org/10.1016/j.nuclphysa.2010.02.005

    Article  Google Scholar 

  7. L.M. Lü, H. Yi, Z.G. Xiao et al., Conceptual design of the HIRFL-CSR external-target experiment. Sci. China Phys. Mech. 60, 012021 (2017). https://doi.org/10.1007/s11433-016-0342-x

    Article  Google Scholar 

  8. Z. Xiao, L.W. Chen, F. Fu et al., Nuclear matter at a HIRFL-CSR energy regime. J. Phys. G Nucl. Partic. 36, 064040 (2009). https://doi.org/10.1088/0954-3899/36/6/064040

    Article  Google Scholar 

  9. C.G. Lu, L.M. Duan, H.S. Xu et al., Test and simulation of a MICROMG-S detector. Chin. Phys. C 2011, 35 (1033). https://doi.org/10.1088/1674-1137/35/1/010

    Google Scholar 

  10. C.S. Ji, M. Shao, H. Zhang et al., Prospects for searching the η → e + e − rare decay at the CSR. Chin. Phys. C 37, 046201 (2013). https://doi.org/10.1088/1674-1137/37/4/46201

    Article  Google Scholar 

  11. Z.G. Xiao, G.C. Yong, L.W. Chen et al., Probing nuclear symmetry energy at high densities using pion, kaon, eta and photon productions in heavy-ion collisions. Eur. Phys. J. A 50(2), 1–10 (2014). https://doi.org/10.1140/epja/i2014-14037-6

    Article  Google Scholar 

  12. P.F. Wang, Z.K. Li, H.X. Li et al., Build-up of the silicon micro-strip detector array in ETF of HIRFL-CSR. Nucl. Phys. Rev. 31, 63–68 (2014). https://doi.org/10.11804/NuclPhysRev.31.01.063

    Article  Google Scholar 

  13. X.W. Zhao, H. Su, Y. Qian et al., Development of a multi-channel front-end electronics module based on ASIC for silicon strip array detectors. Nucl. Phys. Rev. 31, 499–504 (2014). https://doi.org/10.11804/NuclPhysRev.31.04.499

    Google Scholar 

  14. L.F. Kang, L. Zhao, M. Li et al., Prototype readout electronics system of external experiment in HIRFL-CSR. At. Energy Sci. Technol. 49, 154–161 (2015). https://doi.org/10.7538/yzk.2015.49.01.0154. (in Chinese)

    Google Scholar 

  15. L. Zhao, L.F. Kang, J.W. Zhou et al., A 16-channel high-resolution time and char-ge measurement module for the external target experiment in the CSR of HIRFL. Nucl. Sci. Tech. 25, 010401 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.010401

    Google Scholar 

  16. L. Kang, L. Zhao, J. Zhou et al., A 128-channel high precision time measurement module. Metrol. Meas. Syst. 20(2), 275–286 (2013). https://doi.org/10.2478/mms-2013-0024

    Article  Google Scholar 

  17. L. He, S. Zhang, F. Lu et al., Simulation of momentum resolution of the CEE-TPC in HIRFL. Nucl. Tech. 39, 070401 (2016). https://doi.org/10.11889/j.0253-3219.2016.hjs.39.070401. (in Chinese)

    Google Scholar 

  18. J. Abele, J. Berkovitz, J. Boehm et al., The laser system for the STAR time projection chamber. Nucl. Instrum. Methods 499, 692–702 (2003). https://doi.org/10.1016/S0168-9002(02)01966-6

    Article  Google Scholar 

  19. H.B. Liu, Q. Liu, S. Chen et al., A study of thinner-THGEM, with some applications. J. Instrum. 7(06), C06001 (2012). https://doi.org/10.1088/1748-0221/7/06/C06001

    Article  Google Scholar 

  20. Q. Liu, H.B. Liu, S. Chen et al., A successful application of thinner-THGEMs. J. Instrum. 8, C11008 (2013). https://doi.org/10.1088/1748-0221/8/11/C11008

    Article  Google Scholar 

  21. B.L. Wang, Q. Liu, H.B. Liu et al., Ion transportation study for thick gas electron multipliers. Chin. Phys. Lett. 31, 122901 (2014). https://doi.org/10.1088/0256-307X/31/12/122901

    Article  Google Scholar 

  22. X.K. Zhou, Q. Liu, S. Chen et al., Study of thick gaseous electron multipliers gain stability and some influencing factors. Chin. Phys. Lett. 31, 032901 (2014). https://doi.org/10.1088/0256-307X/31/3/032901

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Qian Liu from University of Chinese Academy of Sciences for his support on thick GEM production and Hai-Yun Wang from Institute of High Energy Physics, Chinese Academy of Sciences for providing equipment to measure the laser beam energy per pulse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Lu.

Additional information

This work was supported by the National Key Research and Development Program of China (Nos. 2016YFA0400502 and 2015CB856904), the National Natural Science Foundation of China (Nos. U1332129, 11475243, 11421505, 11775288 and 11405005), and the “100-talent plan” of Shanghai Institute of Applied Physics from the Chinese Academy of Sciences (Nos. Y290061011 and Y526011011).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Lu, F., Li, H. et al. Laser test of the prototype of CEE time projection chamber. NUCL SCI TECH 29, 41 (2018). https://doi.org/10.1007/s41365-018-0382-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0382-4

Keywords

Navigation