Skip to main content

Advertisement

Log in

Measurement of air kerma rate and ambient dose equivalent rate using the G(E) function with hemispherical CdZnTe detector

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Since the room-temperature detector CdZnTe (CZT) has advantages in terms of detection efficiency, energy resolution, and size, it has been extensively used to detect X-rays and gamma-rays. So far, nuclear radiation detectors such as cerium chloride doped with lanthanum bromide (LaBr\(_3\) (Ce)), thallium doped with cesium iodide (CsI (Tl)), thallium doped with sodium iodide (NaI (Tl)), and high-purity germanium (HPGe) primarily use the spectroscopy-dose rate function (G(E)) to achieve the accurate measurement of air kerma rate (\(\dot{K}_{a}\)) and ambient dose equivalent rate (\(\dot{H}^*(10)\)). However, the spectroscopy-dose rate function has been rarely measured for a CZT detector. In this study, we performed spectrum measurement using a hemispherical CZT detector in a radiation protection standards laboratory. The spectroscopy-dose rate function G(E) of the CZT detector was calculated using the least-squares method combined with the standard dose rate at the measurement position. The results showed that the hemispherical CZT detector could complete the measurement of air kerma rate (\(\dot{K}_{a}\)) and ambient dose equivalent rate (\(\dot{H}^*\)(10)) by using the G(E) function at energies between 48 keV and 1.25 MeV, and the relative intrinsic errors were, respectively, controlled within ± 2. 3 and ± 2. 1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Moriuchi, I. Miyanaga, A spectrometric method for measurement of low-level gamma exposure dose. Health Phys. 12, 541–551 (1966). https://doi.org/10.1097/00004032-196604000-00009

    Article  Google Scholar 

  2. Y.Y. Ji, K.H. Chung, W. Lee et al., Feasibility on the spectrometric determination of the individual dose rate for detected gamma nuclides using the dose rate spectroscopy. Radiat. Phys. Chem. 97, 172–177 (2014). https://doi.org/10.1016/j.radphyschem.2013.11.022

    Article  Google Scholar 

  3. Y.Y. Ji, C.J. Kim, K.H. Chung et al., In situ gamma-ray spectrometry in the environment using dose rate spectroscopy. Radiat. Phys. Chem. 119, 90–102 (2016). https://doi.org/10.1016/j.radphyschem.2015.10.001

    Article  Google Scholar 

  4. Y.Y. Ji, K.H. Chung, C.J. Kim et al., Application of the dose rate spectroscopy to the dose-to-curie conversion method using a NaI (Tl) detector. Radiat. Phys. Chem. 106, 320–326 (2015). https://doi.org/10.1016/j.radphyschem.2014.08.009

    Article  Google Scholar 

  5. R. Casanovas, E. Prieto, M. Salvadó, Calculation of the ambient dose equivalent H*(10) from gamma-ray spectra obtained with scintillation detectors. Appl. Radiat. Isot. 118, 154–159 (2016). https://doi.org/10.1016/j.apradiso.2016.09.001

    Article  Google Scholar 

  6. M. Tanigaki, R. Okumura, K. Takamiya et al., Development of KURAMA-II and its operation in Fukushima. Nucl. Instrum. Methods Phys. Res. Sect. A 781, 57–64 (2015). https://doi.org/10.1016/j.nima.2015.01.086

    Article  Google Scholar 

  7. S. Tsuda, T. Yoshida, M. Tsutsumi et al., Characteristics and verification of a car-borne survey system for dose rates in air: KURAMA-II. J. Environ. Radioact. 139, 260–265 (2015). https://doi.org/10.1016/j.jenvrad.2014.02.028

    Article  Google Scholar 

  8. S. Tsuda, M. Tsutsumi, Calculation and verification of the spectrum. Dose conversion operator of various CsI (Tl) scintillation counters for gamma-ray. Hoken Butsuri. 47, 260–265 (2012). https://doi.org/10.5453/jhps.47.260

    Article  Google Scholar 

  9. S. Tsuda, K. Saito, Spectrum-dose conversion operator of NaI (Tl) and CsI (Tl) scintillation detectors for air dose rate measurement in contaminated environments. J. Environ. Radioact. 166, 419–426 (2017). https://doi.org/10.1016/j.jenvrad.2016.02.008

    Article  Google Scholar 

  10. H. Terada, E. Sakai, M. Katagiri, Spectrum-to-exposure rate conversion function of a Ge (Li) in-situ environmental gamma-ray spectrometer. IEEE Trans. Nucl. Sci. 24, 647–651 (1977). https://doi.org/10.1109/TNS.1977.4328758

    Article  Google Scholar 

  11. H.B. Li, M.Y. Jia, R. Wu et al., Calculation of spectrum to dose conversion function of portable HPGe \(\gamma \) spectrometer. Nucl. Electron. Detect. Technol. 33, 699–704 (2013). https://doi.org/10.3969/j.issn.0258-0934.2013.06.011

    Google Scholar 

  12. C.Y. Yi, J.S. Jun, H.S. Chai et al., Measurement of ambient dose equivalent using a NaI (Tl) scintillation detector. Radiat. Prot. Dosim. 74, 273–278 (1997). https://doi.org/10.1093/oxfordjournals.rpd.a032207

    Article  Google Scholar 

  13. M. Tsutsumi, Y. Tanimura, LaCl3(Ce) scintillation detector applications for environmental gamma-ray measurements of low to high dose rates. Nucl. Instrum. Methods Phys. Res. Sect. A. 557, 554–560 (2006). https://doi.org/10.1016/j.nima.2005.11.117

    Article  Google Scholar 

  14. W. Chen, T. Feng, J. Liu et al., A method based on Monte Carlo simulation for the determination of the G (E) function. Radiat. Prot. Dosim. 163, 217–221 (2015). https://doi.org/10.1093/rpd/ncu145

    Article  Google Scholar 

  15. H. Dombrowski, Area dose rate values derived from NaI or LaBr 3 spectra. Radiat. Prot. Dosim. 160, 269–276 (2014). https://doi.org/10.1093/rpd/nct349

    Article  Google Scholar 

  16. A.V. Rybka, L.N. Davydov, I.N. Shlyakhov et al., Gamma-radiation dosimetry with semiconductor CdTe and CdZnTe detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 531, 147–156 (2004). https://doi.org/10.1016/j.nima.2004.05.107

    Article  Google Scholar 

  17. Y. Wang, W.J. Xiong, Z.P. Luo et al., Capability study of multi-function dose rate meter based on hemisphere CdZnTe detector. Atom. Energy Sci. Technol. 48, 618–622 (2014). https://doi.org/10.7538/yzk.2014.48.S0.0618

    Google Scholar 

  18. J.H. Min, Z.B. Shi, Y.B. Qian et al., Simulation of the anode structure for capacitive Frisch grid CdZnTe detectors. Nucl. Sci. Tech. 20, 46–50 (2009). https://doi.org/10.13538/j.1001-8042/nst.20.46-50

    Google Scholar 

  19. G. Zeng, S. Wei, Y. Xia et al., Design of digital nuclear signal processing system for CdZnTe detector. Nucl. Tech. 38(11), 110401 (2015). https://doi.org/10.11889/j.0253-3219.2015.hjs.38.110401. (in Chinese)

    Google Scholar 

  20. S.L. Jiang, S.Q. Jiang, M.C. Hu et al., Experimental study on radiation characteristics of CZT detector. Atom. Energy Sci. Technol. 48, 638–640 (2014). https://doi.org/10.7538/yzk.2014.48.S0.0638

    Google Scholar 

  21. L.B. Niu, Y.L. Li, L. Zhang et al., Performance simulation and structure design of Binode CdZnTe gamma-ray detector. Nucl. Sci. Tech. 25, 010406 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.010406

    Google Scholar 

  22. B. Grosswendt, Conversion coefficients for calibrating individual photon dosemeters in terms of dose equivalents defined in an ICRU tissue cube and PMMA slabs. Radiat. Prot. Dosim. 32, 219–231 (1990). https://doi.org/10.1093/oxfordjournals.rpd.a080737

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Huang.

Additional information

This work was supported by the National Key Scientific Instruments to Develop Dedicated (Nos. 2013YQ090811 and 2016YFF0103800).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P. Measurement of air kerma rate and ambient dose equivalent rate using the G(E) function with hemispherical CdZnTe detector. NUCL SCI TECH 29, 35 (2018). https://doi.org/10.1007/s41365-018-0375-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0375-3

Keywords

Navigation