Skip to main content
Log in

Radiation grafting of poly(vinyl acetate) onto wheat straw and properties of the product

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Poly(vinyl acetate) (PVAc) was grafted onto wheat straw by γ-irradiation to improve the compatibility between wheat straw and high-density polyethelene (PE). The grafting was proved by Fourier transform infrared (FTIR) spectroscopy. The compact structure of wheat straw was loosened because the chemical bonds and crystalline structure were destructed by the γ-rays. The modified wheat straw needed less energy for thermal transition, as revealed by differential scanning calorimetry (DSC). Thermal analysis revealed that grafted PVAc acted as a protective barrier for the wheat straw and leads to an increase in maximum pyrolysis temperature. The crystallite size of grafted wheat straw decreased to 5.33 nm from 5.63 nm before irradiation. There were holes in melted form appeared on the surface of the grafted wheat straws. Both the grafted PVAc and irradiation are beneficial to lower the torque of wheat straw/PE melts and improve its mechanical properties by 36%. Possible mechanism of irradiation grafting was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Jiang, S. Hu, L.S. Sun et al., Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass. Bioresour. Technol. 146, 254–260 (2013). doi:10.1016/j.biortech.2013.07.063

    Article  Google Scholar 

  2. M. Jebrane, F. Pichavant, G. Sèbe, A comparative study on the acetylation of wood by reaction with vinyl acetate and acetic anhydride. Carbohydr. Polym. 83, 339–345 (2011). doi:10.1016/j.carbpol.2010.07.035

    Article  Google Scholar 

  3. J. Schroeter, F. Felix, Melting cellulose. Cellulose 12, 159–165 (2005). doi:10.1007/s10570-004-0344-3

    Article  Google Scholar 

  4. C. Chen, M. Cho, B.W. Kim et al., Thermo plasticization and characterization of kenaf fiber by benzylation. J. Ind. Eng. Chem. 18, 1107–1111 (2012). doi:10.1016/j.jiec.2011.12.012

    Article  Google Scholar 

  5. R.M. Rowell, Chemical modification of wood: a short review. Wood Mater. Sci. Eng. 1, 29–33 (2006). doi:10.1080/17480270600670923

    Article  Google Scholar 

  6. G. Zhang, K. Huang, X. Jiang et al., Acetylation of straw for thermoplastic applications. Carbohydr. Polym. 96, 218–226 (2013). doi:10.1016/j.carbpol.2013.03.069

    Article  Google Scholar 

  7. R. Ou, Q. Wang, M.P. Wolcott et al., Rheological behavior and mechanical properties of wood flour/high density polyethylene blends: effects of esterification of wood with citric acid. Polym. Compos. 37, 553–560 (2014). doi:10.1002/pc.23212

    Article  Google Scholar 

  8. S.S. Panesar, S. Jacob, M. Misra et al., Functionalization of lignin: fundamental studies on aqueous graft copolymerization with vinyl acetate. Ind. Crops Prod. 46, 191–196 (2013). doi:10.1016/j.indcrop.2012.12.031

    Article  Google Scholar 

  9. B. Zhang, R. Wei, M. Yu et al., Graft co-polymerization of maleic acid and vinyl acetate onto poly(vinylidene fluoride) powder by pre-irradiation technique. Nucl. Sci. Technol. 23, 103–108 (2012). doi:10.13538/j.1001-8042/nst.23.103-108

    Google Scholar 

  10. M. Sánchez-Cabezudo, R. Masegosa, C. Salom et al., Correlations between the morphology and the thermo-mechanical properties in poly (vinyl acetate)/epoxy thermosets. J. Therm. Anal. Calorim. 102, 1025–1033 (2010). doi:10.1007/s10973-010-0881-y

    Article  Google Scholar 

  11. T.M. Don, C.F. King, W.Y. Chiu, Synthesis and properties of chitosan-modified poly(vinyl acetate). J. Appl. Polym. Sci. 86, 3057–3063 (2002). doi:10.1002/app.11329

    Article  Google Scholar 

  12. Q.M. Li, X.J. Li, X.Y. Xiong et al., Analysis of degradation products and structural characterization of giant reed and Chinese silvergrass pretreated by 60Co γ-irradiation. Ind. Crops Prod. 83, 307–315 (2016). doi:10.1016/j.indcrop.2016.01.024

    Article  Google Scholar 

  13. Y. Liu, H. Zhou, L. Wang et al., Improving saccharomyces cerevisiae growth against lignocellulose-derived inhibitors as well as maximizing ethanol production by a combination proposal of γ-irradiation pretreatment with in situ detoxification. Chem. Eng. J. 287, 302–312 (2016). doi:10.1016/j.cej.2015.10.086

    Article  Google Scholar 

  14. J. Wu, J. Li, B. Deng et al., Self-healing of the superhydrophobicity by ironing for the abrasion durable superhydrophobic cotton fabrics. Sci. Rep. 3, 2951 (2013). doi:10.1038/srep02951

    Article  Google Scholar 

  15. J.N. Hay, L. Sharma, Crystallisation of poly (3-hydroxybutyrate)/polyvinyl acetate blends. Polymer 41, 5749–5757 (2000). doi:10.1016/S0032-3861(99)00807-1

    Article  Google Scholar 

  16. M.M. Ibrahim, W.K. El-Zawawy, Y. Jüttke et al., Cellulose and microcrystalline cellulose from straw and banana plant waste: preparation and characterization. Cellulose 20, 2403–2416 (2013). doi:10.1007/s10570-013-9992-5

    Article  Google Scholar 

  17. T.E. Motaung, Z. Gqokoma, L.Z. Linganiso et al., The effect of acid content on the poly(furfuryl) alcohol/cellulose composites. Polym. Compos. 37, 2434–2441 (2016). doi:10.1002/pc.23428

    Article  Google Scholar 

  18. C. Zhang, X. Su, X. Xiong et al., 60Co γ-radiation-induced changes in the physical and chemical properties of rapeseed straw. Biomass Bioenerg. 85, 207–214 (2016). doi:10.1021/bm060168y

    Article  Google Scholar 

  19. A.A. Morandim-Giannetti, J.A.M. Agnelli, B.Z. Lanças et al., Lignin as additive in polypropylene/coir composites: thermal, mechanical and morphological properties. Carbohydr. Polym. 87, 2563–2568 (2012). doi:10.1016/j.carbpol.2011.11.041

    Article  Google Scholar 

  20. P. Qu, X. Zhang, Y. Zhou et al., Biomimetic synthesis of hydroxyapatite on cellulose nanofibrils and its application. Sci. Adv. Mater. 4, 187–192 (2012). doi:10.1166/sam.2012.1271

    Article  Google Scholar 

  21. K. Karthika, A.B. Arun, P.D. Rekha, Enzymatic hydrolysis and characterization of lignocellulosic biomass exposed to electron beam irradiation. Carbohydr. Polym. 90, 1038–1045 (2012). doi:10.1016/j.carbpol.2012.06.040

    Article  Google Scholar 

  22. U. Gryczka, W. Migdal, D. Chmielewska et al., Examination of changes in the morphology of lignocellulosic fibers treated with e-beam irradiation. Radiat. Phys. Chem. 94, 226–230 (2014). doi:10.1016/j.radphyschem.2013.07.007

    Article  Google Scholar 

  23. V. Hristov, S. Vasileva, Dynamic mechanical and thermal properties of modified poly(propylene) wood fiber composites. Macromol. Mater. Eng. 288, 798–806 (2003). doi:10.1002/mame.200300110

    Article  Google Scholar 

  24. R. Ou, Y. Xie, M.P. Wolcott et al., Effect of wood cell wall composition on the rheological properties of wood particle/high density polyethylene composites. Compos. Sci. Technol. 93, 68–75 (2014). doi:10.1016/j.compscitech.2014.01.001

    Article  Google Scholar 

  25. L. Dehne, C.V. Babarro, B. Saake et al., Influence of lignin source and esterification on properties of lignin-polyethylene blends. Ind. Crops Prod. 86, 320–328 (2016). doi:10.1016/j.indcrop.2016.04.005

    Article  Google Scholar 

  26. A. Alberti, S. Bertini, G. Gastaldi et al., Electron beam-irradiated textile cellulose fibers: ESR studies and derivatisation with glycidyl methacrylate (GMA). Eur. Polym. J. 41, 1787–1797 (2005). doi:10.1016/j.eurpolymj.2005.02.016

    Article  Google Scholar 

  27. C. Xiao, M. Yang, Controlled preparation of physical cross-linked starch-g-PVA hydrogel. Carbohydr. Polym. 64, 37–40 (2006). doi:10.1016/j.carbpol.2005.10.020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Fu Zhao.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11605077) and the Free Exploration Project for Youth Research of Jiangsu Academy of Agricultural Sciences (No. ZX(15)4012).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, P., Wu, GF., Wu, JX. et al. Radiation grafting of poly(vinyl acetate) onto wheat straw and properties of the product. NUCL SCI TECH 28, 156 (2017). https://doi.org/10.1007/s41365-017-0312-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0312-x

Keywords

Navigation