Skip to main content
Log in

Calculating the thermal properties of 93,94,95Mo using the BCS model with an average value gap parameter

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The gap parameter of the standard BCS model is replaced by the order parameter of the modified Ginzburg–Landau theory. Using this new form of the BCS model, the energy, entropy, and heat capacity of \(^{93,94,95}\)Mo nuclei are calculated. The results are compared with the experimental data and standard BCS results. Since the order parameter does not drop to zero at a critical temperature, our results for thermal properties are free of singularities. We have shown that the heat capacity as a function of temperature behaves smoothly and it is highly in agreement with the experimental heat capacity, while heat capacity behaves singularly and discontinuously in the standard BCS model. A smooth peak in the heat capacity is observed which is interpreted as a signature of the transition from the superfluid to the normal phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957). doi:10.1103/PhysRev.108.1175

    Article  MathSciNet  MATH  Google Scholar 

  2. L.G. Moretto, Statistical description of a paired nucleus with the inclusion of angular momentum. Nucl. Phys. A 185, 145–165 (1972). doi:10.1016/0375-9474(72)90556-8

    Article  Google Scholar 

  3. A.N. Behkami, J.R. Huizenga, Comparison of experimental level densities and spin cutoff factors with microscopic theory for nuclei near A = 60. Nucl. Phys. A 217, 78–92 (1973). doi:10.1016/0375-9474(73)90624-6

    Article  Google Scholar 

  4. P. Moller, J.R. Nix, Nuclear pairing models. Nucl. Phys. A536, 20–60 (1992). doi:10.1016/0375-9474(92)90244-E

    Article  Google Scholar 

  5. N. Sandulescu, O. Civitarese, R.J. Liotta, Temperature dependent BCS equations with continuum coupling Phys. Phys. Rev. C 61, 044317 (2000). doi:10.1103/PhysRevC.61.044317

    Article  Google Scholar 

  6. K. Kaneko, M. Hasegawa, Pairing transition of nuclei at finite temperature. Nucl. Phys. A 740, 95–105 (2004). doi:10.1016/j.nuclphysa.2004.05.001

    Article  Google Scholar 

  7. Z. Kargar, Pairing correlations and thermodynamical quantities in \(^{96,97}\)Mo. Phys. Rev. C 75, 064319 (2007). doi:10.1103/PhysRevC.75.064319

    Article  Google Scholar 

  8. R. Razavi, Ratio of neutron and proton entropy excess in \(^{121}\)Sn compared to \(^{122}\)Sn. Phys. Rev. C 86, 047303 (2012). doi:10.1103/PhysRevC.86.047303

    Article  Google Scholar 

  9. H.J. Lipkin, Collective motion in many-particle systems: Part 1. The violation of conservation laws. Ann. Phys. (NY) 9, 272–291 (1960). doi:10.1016/0003-4916(60)90032-4

    Article  MATH  Google Scholar 

  10. Y. Nogami, Improved superconductivity approximation for the pairing interaction in nuclei. Phys. Rev. B 134, 313–321 (1964). doi:10.1103/PhysRev.134.B313

    Article  Google Scholar 

  11. H.C. Pradhan, Y. Nogami, J. law, Study of approximations in the nuclear pairing-force problem. Nucl. Phys. A 201, 357–368 (1973). doi:10.1016/0375-9474(73)90071-7

    Article  Google Scholar 

  12. N.D. Dang, Influence of particle number fluctuations and vibrational modes on thermodynamic characteristics of a hot nucleus. Z. Phys. A 335, 253–264 (1990). doi:10.1007/BF01304703

    Google Scholar 

  13. L.G. Moretto, Pairing fluctuations in excited nuclei and the absence of a second order phase transition. Phys. Lett. B 40, 1–4 (1972). doi:10.1016/0370-2693(72)90265-1

    Article  Google Scholar 

  14. Z. Kargar, V. Dehghani, Statistical pairing fluctuation and phase transition in \(^{94}\)Mo. J. Phys. G 40, 045108 (2013). doi:10.1088/0954-3899/40/4/045108

    Article  Google Scholar 

  15. P. Arve, G.F. Bertsch, B. Lauritzen, G. Puddu, Static path approximation for the nuclear partition function. Ann. Phys. (NY) 183, 309–319 (1988). doi:10.1016/0003-4916(88)90235-7

    Article  Google Scholar 

  16. B. Lauritzen, A. Anselmino, P.F. Bortignon, R.A. Broglia, Pairing phase transition in small particles. Ann. Phys. (NY) 223, 216–228 (1993). doi:10.1006/aphy.1993.1032

    Article  Google Scholar 

  17. G. Puddu, P.F. Bortignon, R.A. Broglia, The RPA-SPA approximation to level densities. Ann. Phys. (NY) 206, 409–439 (1991). doi:10.1016/0003-4916(91)90006-T

    Article  Google Scholar 

  18. H. Attias, Y. Alhassid, The Perturbed static path approximation at finite temperature: observables and strength functions. Nucl. Phys. A 625, 565–597 (1997). doi:10.1016/S0375-9474(97)00486-7

    Article  Google Scholar 

  19. R. Rossignoli, N. Canosa, P. Ring, Fluctuations and odd-even effects in small superfluid systems. Ann. Phys. (NY) 275, 1–26 (1999). doi:10.1006/aphy.1999.5914

    Article  MATH  Google Scholar 

  20. B. Mühlschlegel, D.J. Scalapino, B. Denton, Thermodynamic properties of small superconducting particles. Phys. Rev. B 6, 1767–1777 (1972). doi:10.1103/PhysRevB.6.1767

    Article  Google Scholar 

  21. P. Mohammadi, V. Dehghani, A.A. Mehmandoost-Khajeh-Dad, Applying modified Ginzburg–Landau theory to nuclei. Phys. Rev. C 90, 054304 (2014). doi:10.1103/PhysRevC.90.054304

    Article  Google Scholar 

  22. A. Schiller et al., Critical temperature for quenching of pair correlations. Phys. Rev. C 63, 021306(R) (2001). doi:10.1103/PhysRevC.63.021306

    Article  Google Scholar 

  23. M. Guttormsen et al., Thermal properties and radiative strengths in \(^{160, 161, 162}\)Dy. Phys. Rev. C 68, 064306 (2003). doi:10.1103/PhysRevC.68.064306

    Article  Google Scholar 

  24. E. Melby et al., Observation of thermodynamical properties in the \(^{162}\)Dy, \(^{166}\)Er, and \(^{172}\)Yb nuclei. Phys. Rev. Lett. 83, 3150–3153 (1999). doi:10.1103/PhysRevLett.83.3150

    Article  Google Scholar 

  25. R. Chankova et al., Level densities and thermodynamical quantities of heated \(^{93 - 98}\)Mo isotopes. Phys. Rev. C 73, 034311 (2006). doi:10.1103/PhysRevC.73.034311

    Article  Google Scholar 

  26. K. Kaneko et al., Breaking of nucleon Cooper pairs at finite temperature in \(^{93-98}\)Mo. Phys. Rev. C 74, 024325 (2006). doi:10.1103/PhysRevC.74.024325

    Article  Google Scholar 

  27. E. Algin et al., Thermodynamic properties of \(^{56, 57}\)Fe. Phys. Rev. C 78, 054321 (2008). doi:10.1103/PhysRevC.78.054321

    Article  Google Scholar 

  28. J.H.C. Pauli, V.V. Pashkevich, V.M. Strutinsky, A method for solving the independent-particle Schr\(\ddot{\text{ o }}\)dinger equation with a deformed average field. Nucl. Phys. A 135, 432–444 (1969). doi:10.1016/0375-9474(69)90174-2

    Article  Google Scholar 

  29. S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski, T. Werner, Single-particle energies, wave functions, quadrupole moments and g-factors in an axially deformed woods-saxon potential with applications to the two-centre-type nuclear problems. Comput. Phys. Commun. 46, 379–399 (1987). doi:10.1016/0010-4655(87)90093-2

    Article  Google Scholar 

  30. Z. Patyk, A. Sobiczewski, Ground-state properties of the heaviest nuclei analyzed in a multidimensional deformation space. Nucl. Phys. A 533, 132–152 (1991). doi:10.1016/0375-9474(91)90823-O

    Article  Google Scholar 

  31. NRV: low energy nuclear knowledge base, http://nrv.jinr.ru/nrv

  32. T. Ericson, The statistical model and nuclear level densities. Adv. Phys. 36, 425–511 (1960). doi:10.1080/00018736000101239

    Article  Google Scholar 

  33. Y.F. Niu, Z.M. Niu, N. Paar, D. Vretenar, G.H. Wang, J.S. Bai, J. Meng, Pairing transitions in finite-temperature relativistic Hartree–Bogoliubov theory. Phys. Rev. C 88, 034308 (2013). doi:10.1103/PhysRevC.88.034308

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Dehghani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani, V., Forozani, G. & Benam, K. Calculating the thermal properties of 93,94,95Mo using the BCS model with an average value gap parameter. NUCL SCI TECH 28, 128 (2017). https://doi.org/10.1007/s41365-017-0284-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0284-x

Keywords

Navigation