Skip to main content
Log in

PL and ESR study for defect centers in 4H-SiC induced by oxygen ion implantation

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Radiation damage in 4H-SiC samples implanted by 70 keV oxygen ion beams was studied using photoluminescence and electron spin resonance techniques. ESR peak of g = 2.0053 and two zero-phonon lines were observed with the implanted samples. Combined with theoretical calculations, we found that the main defect in the implanted 4H-SiC samples was oxygen-vacancy complex. The calculated defect formation energies showed that the oxygen-vacancy centers were stable in n-type 4H-SiC. Moreover, the \( {\text{V}}_{\text{Si}} {\text{O}}_{\text{C}}^{ 0} \) and \( {\text{V}}_{\text{Si}} {\text{O}}_{\text{C}}^{ - 1} \) centers were optically addressable. The results suggest promising spin coherence properties for quantum information science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.R. Weber, W.F. Koehl, J.B. Varley et al., Quantum computing with defects. Proc. Natl. Acad. Sci. USA 107, 8513–8518 (2010). doi:10.1073/pnas.1003052107

    Article  Google Scholar 

  2. P. Neumann, N. Mizuochi, F. Rempp et al., Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008). doi:10.1126/science.1157233

    Article  Google Scholar 

  3. A.L. Falk, B.B. Buckley, G. Calusine et al., Polytype control of spin qubits in silicon carbide. Nat. Commun. 4, 1819 (2013). doi:10.1038/ncomms2854

    Article  Google Scholar 

  4. L.P. Yang, C. Burk, M. Widmann et al., Electron spin decoherence in silicon carbide nuclear spin bath. Phys. Rev. B 90, 241203 (2014). doi:10.1103/PhysRevB.90.241203

    Article  Google Scholar 

  5. P.G. Baranov, A.P. Bundakova, A.A. Soltamova et al., Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B 83, 125203 (2011). doi:10.1103/PhysRevB.83.125203

    Article  Google Scholar 

  6. K. Szász, V. Ivády, I.A. Abrikosov et al., Spin and photophysics of carbon-antisite vacancy defect in 4H silicon carbide: a potential quantum bit. Phys. Rev. B 91, 121201 (2015). doi:10.1103/PhysRevB.91.121201

    Article  Google Scholar 

  7. H.J. von Bardeleben, J.L. Cantin, E. Rauls et al., Identification and magneto-optical properties of the NV center in 4H-SiC. Phys. Rev. B 92, 064104 (2015). doi:10.1103/Physrevb.92.064104

    Article  Google Scholar 

  8. M. Ishimaru, R.M. Dickerson, K.E. Sickafus, High-dose oxygen ion implantation into 6H-SiC. Appl. Phys. Lett. 75, 352–354 (1999). doi:10.1063/1.124372

    Article  Google Scholar 

  9. A. Uedono, S. Tanigawa, T. Ohshima et al., Oxygen-related defects in O+-implanted 6H-SiC studied by a monoenergetic positron beam. J. Appl. Phys. 86, 5392–5398 (1999). doi:10.1063/1.371536

    Article  Google Scholar 

  10. T. Ozaki, Variationally optimized atomic orbitals for large-scale electronic structures. Phys. Rev. B 67, 155108 (2003). doi:10.1103/Physrevb.67.155108

    Article  Google Scholar 

  11. N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991). doi:10.1103/PhysRevB.43.1993

    Article  Google Scholar 

  12. P. Giannozzi, S. Baroni, N. Bonini et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009). doi:10.1088/0953-8984/21/39/395502

    Google Scholar 

  13. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003). doi:10.1063/1.1564060

    Article  Google Scholar 

  14. A. Gali, E. Janzen, P. Deak et al., Theory of spin-conserving excitation of the NV center in diamond. Phys. Rev. Lett. 103, 186404 (2009). doi:10.1103/Physrevlett.103.186404

    Article  Google Scholar 

  15. N.T. Son, P.N. Hai, E. Janzen, Silicon antisite in 4H SiC. Phys. Rev. Lett. 87, 045502 (2001). doi:10.1103/PhysRevLett.87.045502

    Article  Google Scholar 

  16. N.T. Son, X.T. Trinh, L.S. Lovlie et al., Negative-U system of carbon vacancy in 4H-SiC. Phys. Rev. Lett. 109, 187603 (2012). doi:10.1103/Physrevlett.109.187603

    Article  Google Scholar 

  17. Y.G. Zhang, Z. Tang, X.G. Zhao et al., A neutral oxygen-vacancy center in diamond: a plausible qubit candidate and its spintronic and electronic properties. Appl. Phys. Lett. 105, 052107 (2014). doi:10.1063/1.4892654

    Article  Google Scholar 

  18. N.T. Son, A. Henry, J. Isoya et al., Electron paramagnetic resonance and theoretical studies of shallow phosphorous centers in3C-, 4H-, and 6H-SiC. Phys. Rev. B 73, 075201 (2006). doi:10.1103/PhysRevB.73.075201

    Article  Google Scholar 

  19. L. Gordon, A. Janotti, C.G. Van de Walle, Defects as qubits in 3C- and 4H-SiC. Phys. Rev. B 92, 045208 (2015). doi:10.1103/Physrevb.92.045208

    Article  Google Scholar 

  20. S. Arpiainen, K. Saarinen, P. Hautojarvi et al., Optical transitions of the silicon vacancy in 6H-SiC studied by positron annihilation spectroscopy. Phys. Rev. B 66, 075206 (2002). doi:10.1103/Physrevb.66.075206

    Article  Google Scholar 

  21. C.G. Van de Walle, J. Neugebauer, First-principles calculations for defects and impurities: applications to III-nitrides. J. Appl. Phys. 95, 3851–3879 (2004). doi:10.1063/1.1682673

    Article  Google Scholar 

  22. A. Lenef, S.C. Rand, Electronic structure of the N-V center in diamond: theory. Phys. Rev. B 53, 13441–13455 (1996). doi:10.1103/PhysRevB.53.13441

    Article  Google Scholar 

  23. J.A. Larsson, P. Delaney, Electronic structure of the nitrogen-vacancy center in diamond from first-principles theory. Phys. Rev. B 77, 165201 (2008). doi:10.1103/Physrevb.77.165201

    Article  Google Scholar 

  24. F.M. Hossain, M.W. Doherty, H.F. Wilson et al., Ab initio electronic and optical properties of the NV−1 center in diamond. Phys. Rev. Lett. 101, 226403 (2008). doi:10.1103/Physrevlett.101.226403

    Article  Google Scholar 

  25. Y. Tu, Z. Tang, X.G. Zhao et al., A paramagnetic neutral VAlON center in wurtzite AlN for spin qubit application. Appl. Phys. Lett. 103, 072103 (2013). doi:10.1063/1.4818659

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Yan.

Additional information

This work was supported by the National Science Foundation of China (Nos. 61076089, 11505265 and 61227902) and the Ministry of Education of China (SRF for ROCS, SEM).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, GD., Chen, Y., Yan, L. et al. PL and ESR study for defect centers in 4H-SiC induced by oxygen ion implantation. NUCL SCI TECH 28, 105 (2017). https://doi.org/10.1007/s41365-017-0263-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0263-2

Keywords

Navigation