Skip to main content

Advertisement

Log in

Wakefields studies for the SXFEL user facility

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Besides the original seeded undulator line, in the soft X-ray free-electron laser (SXFEL) user facility in Shanghai, a second undulator line based on self-amplified spontaneous emission is proposed to achieve 2-nm laser pulse with extremely high brightness. In this paper, the beam energy deviation induced by the undulator wakefields is numerically calculated, and 3D and 2D results agree well with each other. The beam energy loss along the undulator degrades the expected FEL output performances, i.e., the pulse energy, radiation power and spectrum, which can be compensated with a proper taper in the undulator. Using the planned time-resolved diagnostic, a novel experiment is proposed to measure the SXFEL longitudinal wakefields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.A. Barletta, J. Bisognano, J.N. Corlett et al., Free electron lasers: present status and future challenges. Nucl. Instrum. Methods Phys. Res. A 618, 69–96 (2010). doi:10.1016/j.nima.2010.02.274

    Article  Google Scholar 

  2. H. Öström, H. Öberg, H. Xin et al., Probing the transition state region in catalytic CO oxidation on Ru. Science 347, 978–982 (2015). doi:10.1126/science.1261747

    Article  Google Scholar 

  3. P. Emma, R. Akre, J. Arthur et al., First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010). doi:10.1038/nphoton.2010.176

    Article  Google Scholar 

  4. T. Ishikawa, H. Aoyagi, T. Asaka et al., A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photonics 6, 540–544 (2012). doi:10.1038/nphoton.2012.141

    Article  Google Scholar 

  5. W. Ackermann, G. Asova, V. Ayvazyan et al., Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics 1, 336–342 (2007). doi:10.1038/nphoton.2007.76

    Article  Google Scholar 

  6. Shanghai soft X-ray free-electron laser test facility conceptual design report. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai (2015)

  7. L.H. Yu, Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers. Phys. Rev. A 44, 5178–5193 (1991). doi:10.1103/PhysRevA.44.5178

    Article  Google Scholar 

  8. G. Stupakov, Beam echo effect for generation of short-wavelength radiation. Phys. Rev. Lett. 102, 074801 (2009). doi:10.1103/PhysRevLett.102.074801

    Article  Google Scholar 

  9. A. Kondratenko, E. Saldin, Generation of coherent radiation by a relativistic-electron beam in an undulator. Part. Accel. 10, 207–216 (1980)

    Google Scholar 

  10. M. Song, K. Li, C. Feng et al., Wakefield issue and its impact on X-ray photon pulse in the SXFEL test facility. Nucl. Instrum. Methods Phys. Res. A 822, 71–76 (2015). doi:10.1016/j.nima.2016.03.089

    Article  Google Scholar 

  11. M. Song, H. Deng, C. Feng et al., Longitudinal wakefields in the undulator section of SXFEL user facility, in Proceedings of IPAC16, Busan, Korea, MOPOR005, pp. 595–597

  12. A. Lutman, Impact of the wakefields and of an initial energy curvature on a Free Electron Laser. Ph.D. thesis, Università Degli Studi Di Trieste (2010)

  13. P. Craievich, Short-range longitudinal and transverse wakefield effects in FERMI@Elettra FEL project. Ph.D. thesis, Technische Universiteit Eindhoven (2010)

  14. FERMI@ElettraConcept Design Report, Trieste (2007)

  15. I. Zagorodnov, T. Weiland, The short-range transverse Wakefields in Tesla accelerating structure, in Proceedings of PAC03, Portland, Oregon, USA, RPPG034, pp. 3249–3251

  16. T.Y. Lee, H.S. Kang, J. Choi, Study of PAL-XFEL wake field effects with the GENESIS code, in Proceedings of FEL05, Stanford, California, USA, THPP024, pp. 502–505

  17. T. Tanaka, S. Goto, T. Hara et al., Undulator commissioning by characterization of radiation in X-ray free electron lasers. Phys. Rev. Spec. Top. Accel. Beams 15, 110701 (2012). doi:10.1103/PhysRevSTAB.15.110701

    Article  Google Scholar 

  18. K. Bane, I. Zagorodov, Wakefields in the LCLS Undulator Transitions, in Proceedings of EPAC06, Edinburgh, Scotland, THPCH072, pp. 2952–2954

  19. CST-computer simulation technology. http://www.cst.de/

  20. ABCI Home Page. http://abci.kek.jp/abci.htm

  21. M. Borland, Elegant: a flexible SDDS-compliant code for accelerator simulation. Adv. Photon Source LS-287 (2000)

  22. R. Akre, L. Bentson, P. Emma et al., A transverse RF deflecting structure for bunch length and phase space diagnostics, in Proceedings of PAC01, Chicago, IL, USA, WPAH116, pp. 2353–2355

  23. Y. Ding, F.J. Decker, V.A. Dolgashev et al., Results from the LCLS X-Band transverse deflector with femtosecond temporal resolution (SLAC National Accelerator Laboratory, USA, SLAC-PUB-16015, 2014)

  24. K. Bane, G. Stupakov, Using surface impedance for calculating wakefields in flat geometry. Phys. Rev. Spec. Top. Accel. Beams 18, 034401 (2015). doi:10.1103/PhysRevSTAB.18.034401

    Article  Google Scholar 

  25. K. Bane, G. Stupakov, Roughness tolerance studies for the undulator beam pipe chamber of LCLS-II (SLAC National Accelerator Laboratory, USA, SLAC-PUB-15951, 2014)

  26. G. Stupakov, Surface roughness impedance. AIP Conf. Proc. 581, 141–152 (2001). doi:10.1063/1.1401569

    Article  Google Scholar 

  27. G. Stupakov, R.E. Thomson, D. Walz et al., Effects of beam-tube roughness on X-ray free electron laser performance. Phys. Rev. Spec. Top. Accel. Beams 2, 060701 (1999). doi:10.1103/PhysRevSTAB.2.060701

    Article  Google Scholar 

  28. G. Stupakov, Impedance of small obstacles and rough surfaces. Phys. Rev. Spec. Top. Accel. Beams 1, 064401 (1998). doi:10.1103/PhysRevSTAB.1.064401

    Article  Google Scholar 

  29. I. Zagorodnov, Indirect methods for wake potential integration. Phys. Rev. Spec. Top. Accel. Beams 9, 102002 (2006). doi:10.1103/PhysRevSTAB.9.102002

    Article  Google Scholar 

  30. W.M. Fawley, Z. Huang, K.J. Kim et al., Tapered undulators for SASE FELs. Nucl. Instrum. Methods Phys. Res. A 483, 537–541 (2002). doi:10.1016/S0168-9002(02)00377-7

    Article  Google Scholar 

  31. Y. Jiao, J. Wu, Y. Cai et al., Modeling and multidimensional optimization of a tapered free electron laser. Phys. Rev. Spec. Top. Accel. Beams 15, 050704 (2012). doi:10.1103/PhysRevSTAB.15.050704

    Article  Google Scholar 

  32. M. Song, H. Deng, B. Liu et al., Deflecting cavity considerations for time-resolved machine studies of SXFEL user facility, in Proceedings of IBIC16, Barcelona, Spain, MOPG50, pp. 169–172

Download references

Acknowledgements

The authors are grateful to Xiao Hu, Wei Zhang, Meng Zhang, Kai Li and Han Zhang for helpful discussions and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Xiao Deng.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11475250 and 11322550) and Ten Thousand Talent Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, MH., Feng, C., Huang, DZ. et al. Wakefields studies for the SXFEL user facility. NUCL SCI TECH 28, 90 (2017). https://doi.org/10.1007/s41365-017-0242-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0242-7

Keywords

Navigation