Skip to main content
Log in

An enhanced differential evolution-based inverse radiation transport model for identification of unknown shielding layer thicknesses with gamma-ray spectrum

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Identifying the geometric information of an object by analyzing the detected radiation fields is an important problem for national and global security. In the present work, an inverse radiation transport model, based on the enhanced differential evolution algorithm with global and local neighborhoods (IRT-DEGL), is developed to estimate the unknown layer thickness of the source/shield system with the gamma-ray spectrum. The framework is briefly introduced with the emphasis on handling the enhanced differential evolution algorithm. Using the simulated gamma-ray spectra, the numerical precision of the IRT-DEGL model is evaluated for one-dimensional source systems. Using the detected gamma-ray spectra, the inverse investigations for the unknown thicknesses of multiple shielding layers are performed. By comparing with the traditional gamma-ray absorption method, it is shown that the IRT-EDGL model can provide a much more accurate result and has great potential to be applied for the complicated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G.R. Gilmore, Practical Gamma-Ray Spectrometry, 2nd edn. (Wiley, Chichester, 2008). doi:10.1002/9780470861981

    Book  Google Scholar 

  2. N.J. McCormick, Inverse radiative transport problems: a review. Nucl. Sci. Eng. 112, 185–198 (1992)

    Article  Google Scholar 

  3. Y.Y. Huang, Y.Y. Chen, D.F. Tian et al., \(\gamma \)-Ray self-absorption of cylindrical fissile material. Nucl. Sci. Tech. 16(1), 17–24 (2005)

    Google Scholar 

  4. C.Y. Wu, D.F. Tian, Y.Y. Cheng et al., Gamma ray absorption of cylindrical fissile material with dual shields. Nucl. Sci. Tech. 16(5), 266–272 (2005)

    Google Scholar 

  5. A.F. Iyudin, V. Burwitz, J. Greiner et al., Gamma-ray absorption method (GRAM) application to the identification of egret unidentified sources. Astron. Astrophys. 468, 919–926 (2007). doi:10.1051/0004-6361:20066890

    Article  Google Scholar 

  6. L.P. Zhang, L.Q. Wu, M.F. Wei, Study on the gamma passive analysis for the thickness of two layer shield materials. Nucl. Electr. Detect. Technol. 330(45), 322–324 (2015)

    Google Scholar 

  7. J. Mattingly, D.J. Mitchell, A framework for the solution of inverse radiation transport problems. IEEE Trans. Nucl. Sci. 57, 3734–3743 (2010). doi:10.1109/NSSMIC.2008.4774636

    Google Scholar 

  8. S.J. Norton, A general nonlinear inverse transport algorithm using forward and adjoint flux computations. IEEE Trans. Nucl. Sci. 44, 153–162 (1997). doi:10.1109/23.568797

    Article  Google Scholar 

  9. J.A. Favorite, K.C. Bledsoe, Using the Levenberg–Marquardt method for the solution of inverse transport problems. Trans. Am. Nucl. Soc. 95, 527 (2006)

    Google Scholar 

  10. K.C. Bledsoe, J.A. Favorite, T. Aldemir, Application of the differential evolution method to solving inverse transport problems. Nucl. Sci. Eng. 169, 208–211 (2011)

    Article  Google Scholar 

  11. K.C. Bledsoe, J.A. Favorite, T. Aldemir, Using the Levenberg–Marquardt method for solutions of inverse transport problems in one- and two-dimensional geometries. Nucl. Technol. 176, 106–126 (2011)

    Article  Google Scholar 

  12. J.C. Armstrong, J.A. Favorite, Identification of unknown interface locations in a source/shield system using the mesh adaptive direct search method. Trans. Am. Nucl. Soc. 107, 375–377 (2012)

    Google Scholar 

  13. K.C. Bledsoe, J.A. Favorite, Using the Marquardt method for solution of inverse transport problems in two-dimensional cylinders. Trans. Am. Nucl. Soc. 98, 591 (2008)

    Google Scholar 

  14. J. Mattingly, D.J. Mitchell, Implementation and testing of a multivariate inverse radiation transport solver. Appl. Radiat. Isot. 70, 1136–1140 (2012). doi:10.1016/j.apradiso.2011.10.020

    Article  Google Scholar 

  15. J. Mattingly, D.J. Mitchell, L.T. Harding, Experimental validation of a coupled neutron photon inverse radiation transport solver. Nucl. Instrum. Methods Phys. Res. Sect. A 652, 537–539 (2011). doi:10.1016/j.nima.2011.01.139

    Article  Google Scholar 

  16. K.C. Bledsoe, J.A. Favorite, T. Aldemir, A comparison of the covariance matrix adaptation evolution strategy and the Levenberg–Marquardt method for solving multidimensional inverse transport problems. Ann. Nucl. Eng. 38, 897–904 (2011). doi:10.1016/j.anucene.2010.09.014

    Article  Google Scholar 

  17. K.C. Bledsoe, Inverse methods for radiation transport. Ph.D. Thesis, Ohio State University (2009)

  18. S. Das, A. Abraham, U.K. Chakraborty et al., Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 3, 526–553 (2009). doi:10.1109/TEVC.2008.2009457

    Article  Google Scholar 

  19. P.N. Suganthan, Differential evolution algorithm: recent advances. Lect. Notes Comput. Sci. 7505, 47–56 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mcnp-a general Monte Carlo n-particle transport code, version 5. X-5 Monte Carlo Team, LA-CP-03-0245, Los Alamos National Laboratory (2003)

  21. M. Garcia-Talavera, H. Neder, M.J. Daza et al., Towards a proper modeling of detector and source characteristics in Monte Carlo simulations. Appl. Radiat. Isot. 52, 777 (2000). doi:10.1016/S0969-8043(99)00244-4

    Article  Google Scholar 

  22. D. Budjas, M. Heisel, W. Maneschg et al., Optimisation of the mc model of a \(p\) type Ge spectrometer for the purpose of efficiency determination. Appl. Radiat. Isot. 67, 706 (2009). doi:10.1016/j.apradiso.2009.01.015

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ming-Cong Lan, Xiao-Jun Dang and Wei-Bo He for the discussions during the whole work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Chen.

Additional information

This work was supported by the CAEP foundation for Development of Science and Technology (No. 2015B0103014) and National Natural Science Foundation of China (No. 11605163).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, LP., Sai, X. et al. An enhanced differential evolution-based inverse radiation transport model for identification of unknown shielding layer thicknesses with gamma-ray spectrum. NUCL SCI TECH 28, 84 (2017). https://doi.org/10.1007/s41365-017-0231-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0231-x

Keywords

Navigation