Skip to main content
Log in

Success criteria analysis in support of probabilistic risk assessment for nuclear power plants: application on SGTR accident

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Success criteria analysis (SCA) bridges the gap between deterministic and probabilistic approaches for risk assessment of complex systems. To develop a risk model, SCA evaluates systems behaviour in response to postulated accidents using deterministic approach to provide required information for the probabilistic model. A systematic framework is proposed in this article for extracting the front line systems success criteria. In this regard, available approaches are critically reviewed and technical challenges are discussed. Application of the proposed methodology is demonstrated on a typical Westinghouse-type nuclear power plant. Steam generator tube rupture is selected as the postulated accident. The methodology is comprehensive and general; therefore, it can be implemented on the other types of plants and complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Normal Carl Rasmussen, Reactor safety study, an assessment of accident risks in US commercial nuclear power plants, NUREG 75/014 (1975)

  2. W. Keller, M. Modarres, A historical overview of probabilistic risk assessment development and its uses in nuclear power industry: a tribute to the late Professor Norman Carl Rasmussen. Reliab. Eng. Syst. Saf. 89, 271–285 (2005). doi:10.1016/j.ress.2004.08.022

    Article  Google Scholar 

  3. EPRI, PRA procedures guide: a guide to the performance of probabilistic risk assessments for nuclear power plants, NUREG/CR-2300 (1983)

  4. US NRC, Severe accident risks: an assessment for five US nuclear power plants (1990)

  5. ASME/ANS, Standard for Level 1/large early release frequency PRA for NPP applications, Standard ASME/ANS-RA-S (2008)

  6. ASME/ANS, Probabilistic risk assessment standard for advanced non-LWR nuclear power plants, Standard ASME/ANS RA-S-1.4-2013 (2013)

  7. ANS/ASME, Requirements for low power and shutdown probabilistic risk assessment, Standard ANS/ASME-58.22-2014 (2014)

  8. ASME/ANS, Severe accident progression and radiological release (Level 2) PRA standard for nuclear power plant applications for light water reactors (LWRs), ASME/ANS RA-S-1.2-2014 (2014)

  9. M. Stamatelatos, H. Dezfuli, Probabilistic risk assessment procedures guide for NASA managers and practitioners, NASA/SP-2011-3421 (2011)

  10. I.A. Papazoglou, Z. Nivolianitou, O. Anez et al., Probabilistic safety analysis in chemical installations. J. Loss Prev. Process Ind. 5(3), 181–191 (1992). doi:10.1016/0950-4230(92)80022-Z

    Article  Google Scholar 

  11. R.R. Fullwood, Probabilistic Safety Assessment in Chemical and Nuclear Industries (Butterworth-Heinemann, Woburn, 2000)

    Google Scholar 

  12. J. Tixiera, G. Dusserrea, O. Salvib, D. Gaston, Review of 62 risk analysis methodologies of industrial plants. J. Loss Prev. Process Ind. 15(4), 291–303 (2002). doi:10.1016/S0950-4230(02)00008-6

    Article  Google Scholar 

  13. G.E. Apostolakis, How useful is quantitative risk assessment? Risk Anal. 24(3), 515–520 (2004). doi:10.1111/j.0272-4332.2004.00455.x

    Article  Google Scholar 

  14. S. Schroer, M. Modarres, An event classification schema for evaluating site risk in a multi-unit nuclear power plant probabilistic risk assessment. Reliab. Eng. Syst. Saf. 117, 40–51 (2013). doi:10.1016/j.ress.2013.03.005

    Article  Google Scholar 

  15. M. Rausand, Risk assessment: theory, methods, and applications (Wiley, Hoboken, 2013)

  16. S.M. Hoseyni, F. Yousefpour, A. Aghaei, K. Karimi, S.M. Hoseyni, Effects of soil-structure interaction on fragility and seismic risk; a case study of power plant containment. Loss Prev. Process Ind. 32, 276–285 (2014). doi:10.1016/j.jlp.2014.09.009

    Article  Google Scholar 

  17. S.M. Hoseyni, M. Pourgol-Mohammad, A.A. Tehranifard, F.A. Yousefpour, A systematic framework for effective uncertainty assessment of severe accident calculations; Hybrid qualitative and quantitative methodology. Reliab. Eng. Syst. Saf. 125, 22–35 (2014). doi:10.1016/j.ress.2013.06.037

    Article  Google Scholar 

  18. A. Prosek, M. Cepin, Success criteria time windows of operator actions using RELAP5/MOD3.3 within human reliability analysis. J. Loss Prev. Process Ind. 21, 260–267 (2008). doi:10.1016/j.jlp.2007.06.010

    Article  Google Scholar 

  19. K. Karimi, F. Yousefpour, A. Abbaspour, M. Pourgol-Mohammad, Assessment of human error importance in PWR PSA. Rom. J. Phys. 59(7–8), 873–883 (2014)

    Google Scholar 

  20. R. Barati, S. Setayeshi, On the operator action analysis to reduce operational risk in research reactors. Process Saf. Environ. Prot. 92(6), 789–795 (2014). doi:10.1016/j.psep.2014.02.006

    Article  Google Scholar 

  21. USNRC, Confirmatory TH analysis to support specific success criteria in the risk models, NUREG -1953 (2011)

  22. USNRC, An approach for determining the technical adequacy of probabilistic risk assessment results for risk-informed activities, Regulatory Guide 1.200 (2009)

  23. M. Pourgol-Mohammad, S.M. Hosseini, Comprehensive uncertainty assessment methodology for probabilistic risk assessment, Proceedings of PSA2011 Conference, Wilmington (2011)

  24. S.M. Hoseyni, M. Pourgol-Mohammad, Model uncertainty in severe accident calculations: a structural methodology with application on LOFT LP-FP-2 experiment. J. Nucl. Tech. 193(3), 341–363 (2016). doi:10.13182/NT15-47

    Google Scholar 

  25. T.W. Kim, V.N. Dang, M.A. Zimmermann et al., Quantitative evaluation of change in core damage frequency by postulated power uprate: medium-break loss-of-coolant-accidents. Ann. Nucl. Energy 47, 69–80 (2012). doi:10.1016/j.anucene.2012.04.021

    Article  Google Scholar 

  26. C.J. Everline, Illustration of integrating mechanistic best-estimate analysis results in Level 1 probabilistic risk assessment. Reliab. Eng. Syst. Saf. 44, 139–152 (1994). doi:10.1016/0951-8320(94)90006-X

    Article  Google Scholar 

  27. H.F. Martz, L.L. Harem, W.H. Reed et al., Combining mechanistic best-estimate analysis and Level 1 probabilistic risk assessment. Reliab. Eng. Syst. Saf. 39, 89–108 (1993). doi:10.1016/0951-8320(93)90151-N

    Article  Google Scholar 

  28. Y.J. Cho, T.J. Kim, H.G. Lim et al., Effect of uncertainties in best-estimate thermal hydraulic analysis on core damage frequency for PSA. Nucl. Eng. Des. 240(12), 4021–4030 (2010). doi:10.1016/j.nucengdes.2010.01.014

    Article  Google Scholar 

  29. M. Pourgol-Mohammad, “Effect of uncertainties in best-estimate thermal hydraulic analysis on core damage frequency for PSA” Y.-J. Choa, T.-J. Kima, H.-G. Limb, G.-C. Parka. Nucl. Eng. Des. 241(9), 4060 (2011). doi:10.1016/j.nucengdes.2011.07.021

    Article  Google Scholar 

  30. IAEA, Accident analysis for nuclear power plant, IAEA-SRS-No.023 (2002)

  31. ASME, Standard for Level 1/large early release frequency probabilistic risk assessment for nuclear power plant applications, ASME/ANS RA-Sa-2009 (2009)

  32. IAEA, Determining the quality of probabilistic safety assessment (PSA) for applications in nuclear power plants, IAEA TECDOC-1511 (2006)

  33. BNPP, PSA Level-1 at Power for Bushehr Nuclear Power Plant (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohsen Hoseyni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseyni, S.M., Karimi, K., Hoseyni, S.M. et al. Success criteria analysis in support of probabilistic risk assessment for nuclear power plants: application on SGTR accident. NUCL SCI TECH 28, 33 (2017). https://doi.org/10.1007/s41365-017-0193-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0193-z

Keywords

Navigation