Skip to main content

Advertisement

Log in

Geant4 simulation of 238U(n,f) reaction induced by D-T neutron source

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Knowledge of actinides (n,f) fission process induced by neutron is of importance in the field of nuclear power and nuclear engineering, especially for reactor applications. In this work, fission characteristics of 238U(n,f) reaction induced by D-T neutron source were simulated with Geant4 code from multiple perspectives, including the fission production yields, total nubar, kinetic energy distribution, fission neutron spectrum and cumulative γ-ray spectrum of the fission products. The simulation results agree well with the experimental nuclear reaction data (EXFOR) and evaluated nuclear data (ENDF). Mainly, this work was to examine the rationality of the parametric nuclear fission model in Geant4 and to direct our future experimental measurements for the cumulative fission yields of 238U(n,f) reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.R. Allen, D.C. Crawford, Lead-cooled fast reactor systems and the fuels and materials challenges. Sci. Technol. Nucl. Install, 2007, Article ID 97486. DOI:10.1155/2007/97486

  2. J. Krepel, S. Pelloni, K. Mikityuk, Comparison of open and closed U–Pu equilibrium fuel cycles for Generation-IV fast reactors with the EQL3D procedure. Nucl. Eng. Des. 250, 392–402 (2012). doi:10.1016/j.nucengdes.2012.06.004

    Article  Google Scholar 

  3. X. Cao, Z.X. He, C.R. Qing et al., Feasibility study of 233U production with accelerator driven sub-critical system (in Chinese). Sci. Sin.-Phys. Mech. Astron. 42, 437–444 (2012). doi:10.1360/132012-205

    Google Scholar 

  4. Nuclear Energy Agency Organization for Economic Co-operation and Development. Accelerator-driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles. http://www.oecd-nea.org/ndd/reports/2002/nea3109-ads.pdf

  5. The European Technical Working Group on ADS (2001). A European roadmap for developing accelerator driven systems (ADS) for nuclear waste incineration. http://www.oecd-nea.org/pt/docs/ADS%20ROADMAP.pdf

  6. H. Nifenecker, S. David, J.M. Loiseaux et al., Basics of accelerator driven subcritical reactors. Nucl. Instrum. Methods A 463(3), 428–467 (2001). doi:10.1016/S0168-9002(01)00160-7

    Article  Google Scholar 

  7. J.J.L. Yoonjo, P.S. Matthew, C.K. John et al., Thorium fuel cycle for a molten salt reactor: State of Missouri feasibility study. 121st ASEE Annual Conference & Exposition, Indianapolis, IN (2014). DOI: 10.13140/RG.2.1.2828.6803

  8. Transmutation of radioactive waste. http://www.oecd-nea.org/trw/

  9. X.X. Chen, Z.D. Fan, Y. Wang et al., Experimental research of 238U fission reaction rate in China Experimental Fast Reactor. Atom. Energy Sci. Technol. 47, 120–122 (2013). doi:10.7538/yzk.2013.47.so.0120. (in Chinese)

    Google Scholar 

  10. W.M.D. Jesse, Gamma-ray spectroscopy by direct crystal diffraction. Annu. Rev. Nucl. Sci 8, 163–180 (1958). doi:10.1146/annurev.ns.08.120158.001115

    Article  Google Scholar 

  11. T. Granier, R.O. Nelson, T. Ethvignot et al., Measurement of prompt X-rays in 238U (n, f) from threshold to 400 MeV. Eur. Phys. J. A 49, 114 (2013). doi:10.1140/epja/i2013-13114-8

    Article  Google Scholar 

  12. CERN (2013) Geant4 Installation Guide: Building and installing Geant4 for users and developers. http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/fo/BookInstalGuide.pdf

  13. Physics Reference Manual (2012) http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/BackupVersions/V9.6/fo/PhysicsReferenceManual.pdf

  14. X. Qin, R. Zhou, J.F. Han et al., GEANT4 simulation of the characteristic gamma-ray spectrum of TNT under soil induced by DT Neutrons. Nucl. Sci. Tech. 26(1), 42–47 (2015). doi:10.13538/j.1001-8042/nst.26.010501

    Google Scholar 

  15. Z. Wei, Z.E. Yao, C.L. Lan et al., Monte Carlo simulation of fission yields, kinetic energy, fission neutron spectrum and decay γ-ray spectrum for 232Th(n, f) reaction induced by 3H(d, n)4He neutron source. J. Radioanal. Nucl. Chem. 305(2), 455–462 (2015). doi:10.1007/s10967-014-3910-7

    Article  Google Scholar 

  16. D.J. Gorman, R.H. Tomlinson, Cumulative yields in the 14-MeV neutron fission of 238U. Can. J. Chem. 46, 1663–1672 (1968)

    Article  Google Scholar 

  17. L.H. Gevaert, R.E. Jerv, H.D. Sharma, Cumulative yields in the 14 MeV neutron fission of 232Th and 238U in the symmetric region. Can. J. Chem. 48, 641–651 (1970)

    Article  Google Scholar 

  18. W.X. Li, T.Y. Sun, X.H. Sun, et al. Charge distribution in the fission of 238U by 14.7 MeV neutron. Nucl. Chem. Radiochem. 2, 9–16. (in Chinese)

  19. C. Chung, M.Y. Woo, Fission product yields in the fast-neutron fission of 238U. J. Radioanal. Nucl. Chem. 109, 117–131 (1987)

    Article  Google Scholar 

  20. N. Gharibyan, K.J. Moody, J.D. Despotopulos, First fission yield measurements at the National Ignition Facility: 14-MeV neutron fission of 238U. J. Radioanal. Nucl. Chem. 303(2), 1335–1338 (2014). doi:10.1007/s10967-014-3474-6

    Article  Google Scholar 

  21. E. Dobreva, N. Nenoff, Yields of fission products with masses A = 131 to 135 for the fast neutron induced fission of U-238. J. Radioanal. Nucl. Chem. 81(1), 29–36 (1984)

    Article  Google Scholar 

  22. H. Naik, S. Mukerji, R. Crasta et al., Measurement of fission product yields in the quasi-mono-energetic neutron-induced fission of 238U. Nucl. Phys. A 941, 16–37 (2015). doi:10.1016/j.nuclphysa.2015.05.006

    Article  Google Scholar 

  23. J. Laurec, A. Adam, T. de et al., Fission product yields of 233U, 235U, 238U and 239Pu in fields of thermal neutrons, fission neutrons and 14.7-MeV neutrons. Nucl. Data Sheets 111, 2965–2980 (2010). doi:10.1016/j.nds.2010.11.004

    Article  Google Scholar 

  24. H.D. Selby, M.R. Mac Innes, D.W. Barr et al., Fission product data measured at Los Alamos for fission spectrum and thermal neutrons on 239Pu, 235U, 238U. Nucl. Data Sheets 111, 2891–2922 (2010). doi:10.1016/j.nds.2010.11.002

    Article  Google Scholar 

  25. M. Mac Innes, M.B. Chadwick, T. Kawano. Fission product yields for 14 MeV neutrons on 235U, 238U and 239Pu. Nucl. Data Sheets 112, 3135–3152 (2011). doi:10.1016/j.nds.2011.11.009

    Article  Google Scholar 

  26. T. Ethvignot, T. Granier, P. Casoli, et al. Experimental studies of prompt neutron and photon emission in intermediate energy neutron-induced fission, Fission & Properties of Neutron-rich Nuclei, 2003:418-425. DOI: 10.1142/9789812705211_0060

  27. ENDF: Evaluated Nuclear Data File. https://www-nds.iaea.org/exfor/endf.htm

  28. IAEA-EXFOR Database. https://www-nds.iaea.org/exfor/exfor.htm

  29. Z.E. Yao, W.M. Yue, P. Luo et al., Neutron yield, energy spectrum and angular distribution of accelerator-based T(d, n) 4He reaction neutron source for thick target. Atom. Energy Sci. Technol 42(5), 400–403 (2008)

    Google Scholar 

  30. K. Hirabayashi, T. Nishizawa, H. Uehara, Measurement of neutron yields from thick Al and SUS304 targets bombarded by 5-MeV and 9-MeV deuterons. Prog. Nucl. Sci. Technol. 3, 60–64 (2012)

    Article  Google Scholar 

  31. P. Moller, D.G. Madland, A.J. Sierk et al., Nuclear fission modes and fragment mass asymmetries in a five-dimensional deformation space. Nature 409(6822), 785–790 (2001). doi:10.1038/35057204

    Article  Google Scholar 

  32. X.J. Sun, C.G. Yu, N. Wang, Pre-neutron-emission mass distributions for low-energy neutron-induced actinide fission. Phys. Rev. C 85, 014613 (2012). doi:10.1103/PhysRevC.85.014613

    Article  Google Scholar 

  33. F. Manero, V.A. Konshin, Status of the energy dependent nu-values for the heavy isotopes (Z > 90) from thermal to 15 MeV and nu-values for spontaneous fission. At. Energy Rev 10(4), 637–756 (1972)

    Google Scholar 

  34. Interactive chart of nuclides. http://www.nndc.bnl.gov/chart/

  35. Z. Li, A.Z. Cui, D.M. Liu et al., Precise determination of yields of 95Zr, 140Ba and 147Nd (in Chinese). J. Nucl. Radiochem. 17(2), 65–72 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Lin Lan.

Additional information

This work is supported by the National Natural Science Foundation of China (No. 21327801).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, CL., Peng, M., Zhang, Y. et al. Geant4 simulation of 238U(n,f) reaction induced by D-T neutron source. NUCL SCI TECH 28, 8 (2017). https://doi.org/10.1007/s41365-016-0158-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0158-7

Keywords

Navigation