Skip to main content
Log in

Low-mass vector meson production at forward rapidity in p+p and d+Au collisions at \(\sqrt{s_{\rm NN}}\) = 200 GeV from a multiphase transport model

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Low-mass vector meson (\(\rho , \omega \), and \(\phi \)) production at forward rapidity in p+p and d+Au collisions at \(\sqrt{s_{{\rm NN}}}\) = 200 GeV is studied within the framework of a multiphase transport model (AMPT). Detailed investigations, including the transverse momentum and the rapidity dependence of low-mass vector meson production in the AMPT model, show that the hadron interaction process is important for a quantitative description of the \(\rho \) and \(\omega \) data. But for the \(\phi \) meson, the strange quark production in the AMPT model with the string melting scenario describes the data reasonably well, while the default AMPT model under-predicts the data. The \({\rm N}(\phi )/{\rm N} (\rho + \omega )\) ratio from the AMPT model with the string melting scenario perfectly describes the data in p+p collisions. For the d+Au collisions, an increased trend of this ratio vs. transverse momentum and the number of participants are observed from the AMPT model. Our results indicate that a precise measurement of the \({\rm N}(\phi )/ {\rm N} (\rho + \omega )\) ratio in d+Au and Au+Au collisions will shed more light on the strangeness production and its dynamics in quark–gluon plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I. Arsene et al., Quark–gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment. Nucl. Phys. A 757, 1–27 (2005). doi:10.1016/j.nuclphysa.2005.02.130

    Article  Google Scholar 

  2. B.B. Back et al., The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757, 28–101 (2005). doi:10.1016/j.nuclphysa.2005.03.084

    Article  Google Scholar 

  3. J. Adams et al., Experimental and theoretical challenges in the search for the quark–gluon plasma: the STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005). doi:10.1016/j.nuclphysa.2005.03.085

    Article  Google Scholar 

  4. K. Adcox et al., Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184–283 (2005). doi:10.1016/j.nuclphysa.2005.03.086

    Article  Google Scholar 

  5. F.M. Liu, Explore QCD phase transition with thermal photons. Nucl. Sci. Tech. 24, 050524 (2013). doi:10.13538/j.1001-8042/nst.2013.05.024

    Google Scholar 

  6. C.M. Ko et al., Mean-field effects on matter and antimatter elliptic flow. Nucl. Sci. Tech. 24, 050525 (2013). doi:10.13538/j.1001-8042/nst.2013.05.025

    Google Scholar 

  7. P. Koch, B. Muller, J. Rafelski, Strangeness in relativistic heavy ion collisions. Phys. Rep. 142, 167 (1986). doi:10.1016/0370-1573(86)90096-7

    Article  Google Scholar 

  8. C. Alt et al., Energy dependence of \(\phi \) meson production in central Pb + Pb collisions at \(\sqrt{s_{{\rm NN}}} =6\) to 17 GeV. Phys. Rev. C 78, 044907 (2008). doi:10.1103/PhysRevC.78.044907

    Article  Google Scholar 

  9. B. Alessandro et al., \(\phi \) production in Pb–Pb collisions at 158 GeV/c per nucleon incident momentum. Phys. Lett. B 555, 147 (2003). doi:10.1016/S0370-2693(02)03267-7

    Article  Google Scholar 

  10. D. Adamova et al., Leptonic and charged kaon decay modes of the ϕ meson measured in heavy-ion collisions at the CERN super proton synchrotron. Phys. Rev. Lett. 96, 152301 (2006). doi:10.1103/PhysRevLett.96.152301

    Article  Google Scholar 

  11. B.I. Abelev et al., Partonic flow and \(\phi \)-meson production in Au+Au collisions at \(\sqrt{s_{{\rm NN}}} =200\,{\text{GeV}}\). Phys. Rev. Lett. 99, 112301 (2007). doi:10.1103/PhysRevLett.99.112301

    Article  Google Scholar 

  12. B.I. Abelev et al., Measurements of \(\phi \) meson production in relativistic heavy-ion collisions at the BNL relativistic heavy ion collider (RHIC). Phys. Rev. C 79, 064903 (2009). doi:10.1103/PhysRevC.79.064903

    Article  Google Scholar 

  13. B.I. Abelev et al., Energy and system size dependence of \(\phi \) meson production in Cu+Cu and Au+Au collisions. Phys. Lett. B 673, 183 (2009). doi:10.1016/j.physletb.2009.02.037

    Article  Google Scholar 

  14. A. Adare et al., Nuclear modification factors of \(\phi \) mesons in d+Au, Cu+Cu, and Au+Au collisions at \(\sqrt{s_{{\rm NN}}} =200\,{\text{GeV}}\). Phys. Rev. C 83, 024909 (2011). doi:10.1103/PhysRevC.83.024909

    Article  Google Scholar 

  15. J.H. Chen et al., Parton distributions at hadronization from bulk dense matter produced in Au+Au collisions at \(\sqrt{s_{{\rm NN}}} =200\,{\text{GeV}}\). Phys. Rev. C 78, 034907 (2008). doi:10.1103/PhysRevC.78.034907

    Article  Google Scholar 

  16. J.H. Chen et al., Elliptic flow of \(\phi \) mesons and strange quark collectivity. Phys. Rev. C 74, 064902 (2006). doi:10.1103/PhysRevC.74.064902

    Article  Google Scholar 

  17. T. Sjöstrand, P. Eden, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna, E. Norrbin, High-energy-physics event generation with Pythia 6.1. Comput. Phys. Commun. 135, 238 (2001). doi:10.1016/S0010-4655(00)00236-8

    Article  MATH  Google Scholar 

  18. W. Cassing, E.L. Bratkovskaya, Hadronic and electromagnetic probes of hot and dense nuclear matter. Phys. Rep. 308, 65 (1999). doi:10.1016/S0370-1573(98)00028-3

    Article  Google Scholar 

  19. O. Linnyk, W. Cassing, J. Maninen, E.L. Bratkovskaya, C.M. Ko, Analysis of dilepton production in Au+Au collisions at \(\sqrt{s_{{\rm NN}}} =200\,{\text{GeV}}\) within the parton–hadron-string dynamics transport approach. Phys. Rev. C 85, 024910 (2012). doi:10.1103/PhysRevC.85.024910

    Article  Google Scholar 

  20. L. Adamczyk et al., Dielectron mass spectra from Au+Au collisions at \(\sqrt{s_{{\rm NN}}} =200\,{\text{GeV}}\). Phys. Rev. Lett. 113, 022301 (2014). doi:10.1103/PhysRevLett.113.022301

    Article  Google Scholar 

  21. L. Adamczyk et al., Measurements of dielectron production in Au+Au collisions at \(\sqrt{s_{{\rm NN}}} =200\,{\text{GeV}}\) from the STAR experiment. Phys. Rev. C 92, 024912 (2015). doi:10.1103/PhysRevC.92.024912

    Article  Google Scholar 

  22. Z.W. Lin, C.M. Ko, B.A. Li, B. Zhang, S. Pal, Multiphase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005). doi:10.1103/PhysRevC.72.064901

    Article  Google Scholar 

  23. X.N. Wang, M. Gyulassy, HIJING: a Monte Carlo model for multiple jet production in pp, pA, and AA collisions. Phys. Rev. D 44, 3501 (1991). doi:10.1103/PhysRevD.44.3501

    Article  Google Scholar 

  24. B. Zhang, ZPC 1.0.1: a parton cascade for ultrarelativistic heavy ion collisions. Comput. Phys. Commun. 109, 193 (1998). doi:10.1016/S0010-4655(98)00010-1

    Article  MATH  Google Scholar 

  25. B. Andersson, G. Gustafson, G. Ingelman, T. Sjöstrand, Parton fragmentation and string dynamics. Phys. Rep. 97, 31 (1983). doi:10.1016/0370-1573(83)90080-7

    Article  Google Scholar 

  26. B.A. Li, C.M. Ko, Formation of superdense hadronic matter in high energy heavy-ion collisions. Phys. Rev. C 52, 2037 (1995). doi:10.1103/PhysRevC.52.2037

    Article  Google Scholar 

  27. J. Xu, C.M. Ko, Triangular flow in heavy ion collisions in a multiphase transport model. Phys. Rev. C 84, 014903 (2011). doi:10.1103/PhysRevC.84.014903

    Article  Google Scholar 

  28. A. Adare et al., Low-mass vector-meson production at forward rapidity in p+p collisions at \(\sqrt{s_{{\rm NN}}} =200\,{\text{GeV}}\). Phys. Rev. D 90, 052002 (2014). doi:10.1103/PhysRevD.90.052002

    Article  Google Scholar 

  29. Y.J. Ye, J.H. Chen, Y.G. Ma, S. Zhang, C. Zhong, \(\phi \)-Meson production at forward/backward rapidity in high-energy nuclear collisions from a multiphase transport model. Phys. Rev. C 93, 044904 (2016). doi:10.1103/PhysRevC.93.044904

    Article  Google Scholar 

  30. X.P. Zhang, J.H. Chen, Z.Z. Ren et al., Effect of final state interactions on particle production in d+Au collisions at energies available at the BNL relativistic heavy ion collider. Phys. Rev. C 84, 031901(R) (2011). doi:10.1103/PhysRevC.84.031901

    Article  Google Scholar 

  31. A. Adare et al., \(\phi \) Meson production in d+Au collisions at \(\sqrt{s_{{\rm NN}}} = 200\,{\text{GeV}}\). Phys. Rev. C 92, 044909 (2015). doi:10.1103/PhysRevC.92.044909

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Gang Ma.

Additional information

This work was supported in part by the Major State Basic Research Development Program in China (No. 2014CB845401) and the National Natural Science Foundation of China (Nos. 11421505, 11520101004, 11275250 and 11322547).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YF., Ye, YJ., Chen, JH. et al. Low-mass vector meson production at forward rapidity in p+p and d+Au collisions at \(\sqrt{s_{\rm NN}}\) = 200 GeV from a multiphase transport model. NUCL SCI TECH 27, 87 (2016). https://doi.org/10.1007/s41365-016-0093-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0093-7

Keywords

Navigation