Skip to main content
Log in

Properties of phosphate glass waste forms containing fluorides from a molten salt reactor

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Radioactive fluoride wastes are generated during the operation of molten salt reactors (MSRs) and reprocessing of their spent fuel. Immobilization of these wastes in borosilicate glass is not feasible because of the very low solubility of fluorides in this host. Alternative candidates are thus an active topic of research including phosphate-based glasses, crystalline ceramics, and hybrid glass–ceramic systems. In this study, mixed fluorides were employed as simulated MSRs waste and incorporated into sodium aluminophosphate glass to obtain phosphate-based waste form. These waste forms were characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Leaching tests were performed in deionized water using the product consistency test A method. This study demonstrates that up to 20 mol% of simulated radioactive waste can be introduced into the NaAlP glass matrix, and the chemical durability is much better than that of borosilicate. The addition of Fe2O3 in the NaAlP glass matrix results in increases of the chemical durability at the expense of fluoride loading (to 6.4 mol%). Phosphate glass vitrification of radioactive waste containing fluorides is a potential method to treat and dispose of MSR wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. B. Cai, J. Wang, L. Sun et al., Experimental study and numerical optimization on a vane-type separator for bubble separation in TMSR. Prog. Nucl. Energy 74, 1–13 (2014). doi:10.1016/j.pnucene.2014.02.007

    Article  Google Scholar 

  2. T. Jin, X. Xiaobin, P. Chao et al., Impact analysis of criticality safety for 10-MWt solid thorium-based molten salt reactor spent nuclear fuel storage system. Nucl. Sci. Technol. 38(5), 050602 (2015). (in Chinese)

    Google Scholar 

  3. Z. Zhihong, X. Xiaobin, C. Jun et al., Simulation of radiation dose distribution and thermal analysis for the bulk shielding of an optimized molten salt reactor. Nucl. Sci. Technol. 26(4), 040603 (2015). doi:10.13538/j.1001-8042/nst.26.040603

    Google Scholar 

  4. D.D. Siemer, Molten salt breeder reactor waste management. Nucl. Technol. 185, 100–108 (2014). doi:10.13182/NT12-164

    Article  Google Scholar 

  5. F.J. Peretz, Identification and Evaluation of Alternatives for the Disposition of Fluoride Fuel and Flush Salts from the Molten Salt Reactor Experiment. MSRE Technical Report ORNL/ER-380. (U.S. Department of Energy Office of Environmental Management, 1996), pp. 109–122

  6. D. Day, Z. Wu, C. Ray et al., Chemically durable iron phosphate glass wasteforms. J. Non-Cryst. Solids 241(1), 1–12 (1998). doi:10.1016/S0022-3093(98)00759-5

    Article  Google Scholar 

  7. I. Donald, B. Metcalfe, R.J. Taylor, The immobilization of high level radioactive wastes using ceramics and glasses. J. Mater. Sci. 32(22), 5851–5887 (1997). doi:10.1023/A:1018646507438

    Article  Google Scholar 

  8. I.W. Donald, B. Metcalfe, S.K. Fong et al., A glass-encapsulated calcium phosphate wasteform for the immobilization of actinide-, fluoride-, and chloride-containing radioactive wastes from the pyrochemical reprocessing of plutonium metal. J. Nucl. Mater. 361(1), 78–93 (2007). doi:10.1016/j.jnucmat.2006.11.011

    Article  Google Scholar 

  9. M.I. Ojovan, W.E. Lee, An Introduction to Nuclear Waste Immobilisation (Newnes Press, Amsterdam, 2005), pp. 248–249

    Google Scholar 

  10. R.K. Brow, Review: the structure of simple phosphate glasses. J. Non-Cryst. Solids 263, 1–28 (2000). doi:10.1016/S0022-3093(99)00620-1

    Article  Google Scholar 

  11. P. Sengupta, A review on immobilization of phosphate containing high level nuclear wastes within glass matrix–Present status and future challenges. J. Hazard. Mater. 235, 17–28 (2012). doi:10.1016/j.jhazmat.2012.07.039

    Article  Google Scholar 

  12. M. Mesko, D. Day, B. Bunker, Immobilization of CsCl and SrF in iron phosphate glass. Waste Manag 20(4), 271–278 (2000). doi:10.1016/S0956-053X(99)00331-1

    Article  Google Scholar 

  13. X. Feng, M. Schweiger, H. Li et al, Retention of Sulfur, Phosphorus, Chlorine, and Fluorine in Hanford Phase II Vendor LLW Glasses. (American Nuclear Society, Inc., La Grange Park, IL, United States, 1996), CONF-960804–Vol.1 TRN: 97:008601

  14. P.R. Hrma, Retention of Halogens in Waste Glass. Technical Report PNNL-19361. (Pacific Northwest National Laboratory Richland, WA, 2010), pp. 13–18

  15. Y.G. Lavrinovich, M. Kormilitsyn, V. Konovalov et al., Vitrification of chloride wastes in the pyroelectrochemical method of reprocessing irradiated nuclear fuel. At. Energy 95(5), 781–785 (2003)

    Article  Google Scholar 

  16. B. Tiwari, M. Pandey, V. Sudarsan et al., Study of structural modification of sodium aluminophosphate glasses with TiO2 addition through Raman and NMR spectroscopy. Phys. B 404(1), 47–51 (2009). doi:10.1016/j.physb.2008.10.016

    Article  Google Scholar 

  17. I. Donald, B. Metcalfe, Thermal properties and crystallization kinetics of a sodium aluminophosphate based glass. J. Non-Cryst. Solids 348, 118–122 (2004). doi:10.1016/j.jnoncrysol.2004.08.136

    Article  Google Scholar 

  18. Standard Test methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses: the Product Consistency Test (PCT)

  19. P. Bingham, R. Hand, S. Forder et al., Structure and properties of iron borophosphate glasses. Phys. Chem. Glasses B 47(4), 313–317 (2006)

    Google Scholar 

  20. H. Uwe, K. Rainer, S. Dörte et al., A neutron and X-ray diffraction study of the structure of the LaP3O9 glass. J. Non-Cryst. Solids 232, 44–50 (1998). doi:10.1016/S0022-3093(98)00396-2

    Google Scholar 

  21. W. Miniscalco, Erbium-doped glasses for fiber amplifiers at 1500 nm. Lightwave Technol. 9(2), 234–250 (1991). doi:10.1109/50.65882

    Article  Google Scholar 

  22. L. Zhang, R.K. Brow, A Raman Study of iron–phosphate crystalline compounds and glasses. J. Am. Ceram. Soc. 94(9), 3123–3130 (2011). doi:10.1111/j.1551-2916.2011.04486.x

    Article  Google Scholar 

  23. J.J. Hudgens, R.K. Brow, D.R. Tallant et al., Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses. J. Non-Cryst. Solids 223(1), 21–31 (1998). doi:10.1016/S0022-3093(97)00347-5

    Article  Google Scholar 

  24. T. Kasuga, Y. Abe, Calcium phosphate invert glasses with soda and titania. J. Non-Cryst. Solids 243(1), 70–74 (1999). doi:10.1016/S0022-3093(98)00820-5

    Article  Google Scholar 

  25. H. Liu, J. Ma, J. Gong et al., The structure and properties of SnF2–SnO–P2O5 glasses. J. Non-Cryst. Solids 419, 92–96 (2015). doi:10.1016/j.jnoncrysol.2015.03.040

    Article  Google Scholar 

  26. J.K. Christie, R.I. Ainsworth, N.H. de Leeuw, Ab initio molecular dynamics simulations of structural changes associated with the incorporation of fluorine in bioactive phosphate glasses. Biomaterials 35(24), 6164–6171 (2014). doi:10.1021/jp110788h

    Article  Google Scholar 

  27. EJ/1186-2005: Characterization of radioactive waste forms and packages. 2005: 9. (In Chinese)

  28. M. Karabulut, G. Marasinghe, C. Ray et al., An investigation of the local iron environment in iron phosphate glasses having different Fe(II) concentrations. J. Non-Cryst. Solids 306(2), 182–192 (2002). doi:10.1016/S0022-3093(02)01053-0

    Article  Google Scholar 

  29. U. Hoppe, M. Karabulut, E. Metwalli et al., The Fe–O coordination in iron phosphate glasses by x-ray diffraction with high energy photons. J. Phys. Condens. Matter 15(36), 6143 (2003)

    Article  Google Scholar 

  30. G.F. Piepel, T.E. Jones, D.L. Eggett et al. Product Consistency Test Round Robin Conducted by the Materials Characterization Center: Summary Report. (Pacific Northwest Laboratory, 1989), pp. 20–21

  31. C.M. Jantzen. Engineering Study of the Hanford Low Activity Waste (LAW) Steam Reforming Process (U). (2002), p. 135

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Ping Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, YP., Xia, XB., Qiao, YB. et al. Properties of phosphate glass waste forms containing fluorides from a molten salt reactor. NUCL SCI TECH 27, 63 (2016). https://doi.org/10.1007/s41365-016-0059-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0059-9

Keywords

Navigation