Skip to main content

Advertisement

Log in

An investigation on the dosimetric impact of hip prosthesis in radiotherapy

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The objectives of this study are to evaluate the dosimetric impact of hip prosthesis using ELEKTA linac X-rays and compare the dose perturbations of metallic and nonmetallic hip prostheses. The local dose distributions of typical hip prostheses were calculated for 4, 8, and \(15\,\hbox {MV}\) beams by Geant4. Three prosthesis materials were selected in calculation to reveal the relation between material type and local dose perturbations of prostheses. Furthermore, the effect of nominal energy on prosthesis perturbation was also discussed and analyzed. Taking the calculated dose to the hip joint as reference, considerable differences were observed between prostheses and hip joints. In the prosthesis shadow region, the relative dose decreasing was up to 36, 21, and 16 % for the Co–Cr–Mo alloy, titanium alloy, and ceramic prostheses, respectively. In backscattering region, the relative dose increasing was about 1–7 %. Overall, the results show that the dose perturbation effect of prostheses was mainly determined by material type, nominal energy, and density. Among these typical hip prostheses, ceramic prosthesis introduces the lowest dose perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. Wylde, E. Marques, N. Artz et al., Effectiveness and cost-effectiveness of a group-based pain self-management intervention for patients undergoing total hip replacement: feasibility study for a randomized controlled trial. Trials 15, 176 (2014). doi:10.1186/1745-6215-15-176

    Article  Google Scholar 

  2. J.N. Katz, E.A. Wright, J.J.Z. Polaris et al. Prevalence and risk factors for periprosthetic fracture in older recipients of total hip replacement: a cohort study. BMC Musculoskelet. Disord. 15, 168. doi:10.1186/1471-2474-15-168

  3. M. Bazalova, L. Beaulieu, S. Palefsky et al., Correction of CT artifacts and its influence on Monte Carlo dose calculations. Med. Phys. 34, 2119–2132 (2007). doi:10.1118/1.2736777

    Article  Google Scholar 

  4. L. Yu, H. Li, J. Mueller et al., Metal artifact reduction from reformatted projections for hip prostheses in multislice helical computed tomography: techniques and initial clinical results. Invest. Radiol. 44, 691–696 (2009). doi:10.1097/RLI.0b013e3181b0a2f9

    Article  Google Scholar 

  5. X.Y. Gong, E. Meyer, X.J. Yu et al., Clinical evaluation of the normalized metal artefact reduction algorithm caused by dental fillings in CT. Dentomaxillofac Radiol. 42, 20120105 (2013). doi:10.1259/dmfr.20120105

    Article  Google Scholar 

  6. S. Çatl, G. Tanır, Experimental and Monte Carlo evaluation of Eclipse treatment planning system for effects on dose distribution of the hip prostheses. Med. Dosim. 38, 332–336 (2013). doi:10.1016/j.meddos.2013.03.005

    Article  Google Scholar 

  7. G.X. Ding, C.W. Yu, A study on beams passing through hip prosthesis for pelvic radiation treatment. Int. J. Radiat. Oncol. Biol. Phys. 51, 1167–1175 (2001). doi:10.1016/S0360-3016(01)02592-5

    Article  Google Scholar 

  8. A. Mesbahi, F.S. Nejad, Dose attenuation effect of hip prostheses in a 9-MV photon beam: commercial treatment planning system versus Monte Carlo calculations. Radiat. Med. 25, 529–535 (2007). doi:10.1007/s11604-007-0181-z

    Article  Google Scholar 

  9. C. Reft, R. Alecu, I.J. Das et al., Dosimetric considerations for patients with HIP prostheses undergoing pelvic irradiation. Report of the AAPM Radiation Therapy Committee Task Group 63. Med. Phys. 30, 1162–1182 (2003). doi:10.1118/1.1565113

    Article  Google Scholar 

  10. J. Ojala, The accuracy of the Acuros XB algorithm in external beam radiotherapy-a comprehensive review. Int. J. Cancer Thera. Oncol. 2, 020417 (2014). doi:10.14319/ijcto.0204.17

    Article  Google Scholar 

  11. S. Rana, C. Cheng, Y. Zheng et al., Dosimetric study of uniform scanning proton therapy planning for prostate cancer patients with a metal hip prosthesis, and comparison with volumetric-modulated arc therapy. J. Appl. Clin. Med. Phys. 15, 335–348 (2014). doi:10.1120/jacmp.v15i3.4611

    Google Scholar 

  12. I. Das, S. Chang, C. Cheng et al., Dosimetric comparison of high-Z inhomogeneity in IMRT: a collaborative study. Med. Phys. 34, 2592 (2007). doi:10.1118/1.2761525

    Article  Google Scholar 

  13. P.J. Keall, J.V. Siebers, R. Jeraj et al., Radiotherapy dose calculations in the presence of hp prostheses. Med. Dosim. 28, 107–112 (2003). doi:10.1016/S0958-3947(02)00245-5

    Article  Google Scholar 

  14. A.B. Hwang, E. Kinsey, P. Xia, Investigation of the dosimetric accuracy of the isocenter shifting method in prostate cancer patients with and without hip prostheses. Med. Phys. 36, 5221–5227 (2009). doi:10.1118/1.3245882

    Article  Google Scholar 

  15. R. Roberts, How accurate is a CT-based dose calculation on a pencil beam TPS for a patient with a metallic prosthesis? Phys. Med. Biol. 46, N227–N234 (2001). doi:10.1088/0031-9155/46/9/402

    Article  Google Scholar 

  16. C.A. Oliveiraa, I.S. Candeláriaa, P.B. Oliveiraa et al., Metallosis: a diagnosis not only in patients with metal-on-metal prostheses. Eur. J. Radiol. Open 2, 3–6 (2015). doi:10.1016/j.ejro.2014.11.001

    Article  Google Scholar 

  17. T. Roy, D. Choudhury, S. Ghosh et al., Improved friction and wear performance of micro dimpled ceramic-on-ceramic interface for hip joint arthroplasty. Ceram. Int. 41, 681–690 (2015). doi:10.1016/j.ceramint.2014.08.123

    Article  Google Scholar 

  18. E. Sariali, S. Klouche, P. Mamoudy, Ceramic-on-ceramic total hip arthroplasty: is squeaking related to an inaccurate three-dimensional hip anatomy reconstruction? Orthop. Traumat. Surg. Res. 100, 437–440 (2014). doi:10.1016/j.otsr.2014.01.009

    Article  Google Scholar 

  19. K. Jabbari, H.S. Anvar, M.B. Tavakoli et al., Monte Carlo simulation of siemens ONCOR linear accelerator with BEAMnrc and DOSXYZnrc code. J. Med. Signals Sens. 3, 172–179 (2013)

    Google Scholar 

  20. R.S. Vishwakarma, T.P. Selvam, S. Sahoo et al., Monte Carlo-based investigation of water-equivalence of solid phantoms at \({}^{137}\text{ Cs }\) energy. J. Med. Phys. 38, 158–164 (2013). doi:10.4103/0971-6203.121192

    Article  Google Scholar 

  21. X. Dong, W. Luo, K. Yue et al., Monte carlo study on \(6\,\text{ MV }\) photon beams of a CyberKnifestereotactic radiosurgery system. Nucl. Sci. Tech. 1, 16–19 (2010). doi:10.13538/j.1001-8042/nst.21.16-19

    Google Scholar 

  22. J. Zhu, W. Ma, Y. Zhu et al., Monte-Carlo simulation of pinhole collimator of a small field of view gamma camera for small animal imaging. Nucl. Sci. Tech. 1, 37–41 (2009). doi:10.13538/j.1001-8042/nst.20.37-41

    Google Scholar 

  23. M. Asai, J. Apostolakis, G. Cosmo et al. Introduction to Geant4. http://geant4.web.cern.ch/geant4/UserDocumentation/Welcome/IntroductionToGeant4/html/index.html

  24. International Commission on Radiological Protection. Report of the Task Group on Reference Man. ICRP Publication 23. (Pergamon Press, Oxford, 1975)

Download references

Acknowledgments

This study was supported by Heilongjiang Province Natural Science Foundation (No. A200805), the Education Department of Heilongjiang Province (No. 12521425), and the postdoctoral research start-up funds of Heilongjiang Province (No. LBH-Q11013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Ling Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, WC., Bai, YL., Zhao, WB. et al. An investigation on the dosimetric impact of hip prosthesis in radiotherapy. NUCL SCI TECH 27, 19 (2016). https://doi.org/10.1007/s41365-016-0020-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0020-y

Keywords

Navigation