Skip to main content
Log in

Zeolitic imidazolate framework-8 as a nanoadsorbent for radon capture

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The feasibility of adsorption and the adsorption behavior of radon on a nanomaterial-based zeolitic imidazolate framework-8 (ZIF-8) adsorbent were investigated. Grand canonical Monte Carlo simulation and four-channel low-background α/β measurement were performed to examine the adsorption kinetics of this adsorbent. Results demonstrated that ZIF-8 is a good adsorbent of radon. Therefore, this adsorbent can be used to significantly reduce the hazardous effects of radon on occupational radiation workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Khajeh, S. Laurent, K. Dastafkan, Nanoadsorbents classification, preparation, and applications (with emphasis on aqueous media). Chem. Rev. 113, 7728–7768 (2013). doi:10.1021/cr400086v

    Article  Google Scholar 

  2. S.P. Zhu, Z. Li, Radiotoxicology, 3rd edn. (Atomic Energy Press, Beijing, 1992), 289–291. (in Chinese)

    Google Scholar 

  3. S.D. Luo, Y.Q. Deng, F.Z. Dong et al., Evaluation method of radon preventing effect in underground construction. Nucl. Technol. 37, 060501 (2014). doi:10.11889/j.0253-3219.2014.hjs.37.060501. (in Chinese)

    Google Scholar 

  4. M.M. Khin, A.S. Nair, V.J. Babu et al., A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5, 8075–8109 (2012). doi:10.1039/C2EE21818F

    Article  Google Scholar 

  5. B.L. Chen, S.C. Xiang, G.D. Qian, Metal–organic frameworks with functional pores for recognition of small molecule. Acc. Chem. Res. 43, 1115–1124 (2010). doi:10.1021/ar100023

    Article  Google Scholar 

  6. J.R. Li, J. Sculley, H.C. Zhou, Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2011). doi:10.1021/cr200190s

    Article  Google Scholar 

  7. B. Wang, A.P. Cote, H. Furukawa et al., Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453, 207–212 (2008). doi:10.1038/nature069007

    Article  Google Scholar 

  8. O.V. Magdysyuk, F. Adams, H.-P. Liermann et al., Understanding the adsorption mechanism of noble gases Kr and Xe in CPO-27-Ni, CPO-27-Mg, and ZIF-8. Phys. Chem. Chem. Phys. 16, 23908–23914 (2014). doi:10.1039/C4CP03298E

    Article  Google Scholar 

  9. A.S. Dorcheh, D. Denysenko, D. Volkmer et al., Noble gases and microporous frameworks; from interaction to application. Microporous Mesoporous Mater. 162, 64–68 (2012). doi:10.1016/j.micromeso.2012.06.004

    Article  Google Scholar 

  10. M.V. Parkes, H. Demir, S.L. Teich-McGoldrick et al., Molecular dynamics simulation of framework flexibility effects on noble gas diffusion in HKUST-1 and ZIF-8. Microporous Mesoporous Mater. 194, 190–199 (2014). doi:10.1016/j.micromeso.2014.03.027

    Article  Google Scholar 

  11. Q. Wang, H. Wang, S. Peng et al., Adsorption and separation of Xe in metal–organic frameworks and covalent–organic materials. J. Phys. Chem. C 118, 10221–10229 (2014). doi:10.1021/jp503255g

    Article  Google Scholar 

  12. D.F. Sava, M.A. Rodriguez, K.W. Chapman et al., Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8. J. Am. Chem. Soc. 133, 12398–12401 (2011). doi:10.1021/ja204757x

    Article  Google Scholar 

  13. Y. Gurdal, S. Keskin, Predicting noble gas separation performance of metal organic frameworks using theoretical correlations. J. Phys. Chem. C 117, 5229–5241 (2013). doi:10.1021/jp312838v

    Article  Google Scholar 

  14. Z. Hulvey, K.Z.V. Lawler, Z. Qiao et al., Noble gas adsorption in copper trimesate, HKUST-1: an experimental and computational study. J. Phys. Chem. C 117, 20116–20126 (2013). doi:10.1021/jp408034u

    Article  Google Scholar 

  15. S.T. Meek, S.L. Teich-McGoldrick, J.J. Perry et al., Effects of polarizability on the adsorption of noble gases at low pressures in monohalogenated isoreticular metal–organic frameworks. J. Phys. Chem. C 116, 19765–19772 (2012). doi:10.1021/jp303274m

    Article  Google Scholar 

  16. C.A. Fernandez, J. Liu, P.K. Thallapally et al., Switching Kr/Xe selectivity with temperature in a metal–organic framework. J. Am. Chem. Soc. 134, 9046–9049 (2012). doi:10.1021/ja302071t

    Article  Google Scholar 

  17. J. Liu, P.K. Thallapally, D. Strachan, Metal–organic frameworks for removal of Xe and Kr from nuclear fuel reprocessing plants. Langmuir 28, 11584–11589 (2012). doi:10.1021/la301870n

    Article  Google Scholar 

  18. I. Halasz, P.J. Beldon, A. Belenguer et al., Real-time and in situ monitoring of mechanochemical milling reactions. Nat. Chem. 5, 66–73 (2013). doi:10.1038/nchem.1505

    Google Scholar 

  19. S. Tanaka, K. Kida, M. Okita et al., Size-controlled synthesis of zeolitic imidazolate framework-8 (ZIF-8) crystals in an aqueous system at room temperature. Chem. Lett. 41, 1337–1339 (2012). doi:10.1246/cl.2012.1337

    Article  Google Scholar 

  20. Y.C. Pan, Y.Y. Liu, G.F. Zeng et al., Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 47, 2071–2073 (2011). doi:10.1039/C0CC05002D

    Article  Google Scholar 

  21. S. Tanaka, K. Kida, T. Nagaoka et al., Mechanochemical dry conversion of zinc oxide to zeolitic imidazolate framework. Chem. Commun. 49, 7884–7886 (2013). doi:10.1039/C3CC43028F

    Article  Google Scholar 

  22. K. Kida, M. Okita, K. Fujita et al., Formation of high crystalline ZIF-8 in an aqueous solution. Cryst. Eng. Comm. 15, 1794–1801 (2013). doi:10.1039/C2CE26847G

    Article  Google Scholar 

  23. J. Cravillon, S. Munzer, S.J. Lohmeier et al., Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater. 21, 1410–1412 (2009). doi:10.1021/cm900166h

    Article  Google Scholar 

  24. A.K. Rappe, C.J. Casewit, K.S. Colwell et al., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. SOC 114, 10024–10039 (1992). doi:10.1021/ja00051a040

    Article  Google Scholar 

  25. M.V. Parkes, C.L. Staiger, J.J. Perry IV et al., Screening metal–organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology. Phys. Chem. Chem. Phys. 15, 9093–9106 (2013). doi:10.1039/c3cp50774b

    Article  Google Scholar 

  26. H. Sun, COMPASS: an ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds. J. Phys. Chem. B 38, 7338–7364 (1998). doi:10.1021/jp980939v

    Article  Google Scholar 

  27. S.A. Moggach, T.D. Bennett, A.K. Cheetham, The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 Gpa. Angew. Chem. Int. Ed. 48, 7087–7089 (2009). doi:10.1002/anie.200902643

    Article  Google Scholar 

  28. M.G. Martin, MCCCS Towhee: a tool for Monte Carlo molecular simulation. Mol. Simul. 39, 1212–1222 (2013). doi:10.1080/08927022.2013.828208

    Article  Google Scholar 

  29. K.S. Park, Z. Ni, J.Y. Choi et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. 103, 10186–10191 (2006). doi:10.1073/pnas.0602439103

    Article  Google Scholar 

  30. J.K. Zhao, L.Q. Ge, G.J. Zou et al., Experimental study on horizontal distribution of Rn concentration in confined chamber. Nucl. Technol. 36, 110404 (2013). doi:10.11889/j.0253-3219.2013.hjs.36.110404. (in Chinese)

    Google Scholar 

  31. D. Van Der Spoel, E. Lindahl, B. Hess et al., GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005). doi:10.1002/jcc.20291

    Article  Google Scholar 

  32. W.C. Ding, J.H. Ruan, Q. Huang et al., Radon measurement in α energy spectrum and its influence factors. Nucl. Technol. 35, 945–948 (2012). (in Chinese)

    Google Scholar 

Download references

Acknowledgments

Supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Open Project of Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection (No. KJS1246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Tu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XW., Yan, T., Wan, J. et al. Zeolitic imidazolate framework-8 as a nanoadsorbent for radon capture. NUCL SCI TECH 27, 9 (2016). https://doi.org/10.1007/s41365-016-0008-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0008-7

Keywords

Navigation