Skip to main content
Log in

Screening antifungal properties of essential oils against taro leaf blight disease

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Recent advances in the exploration of botanicals for their antimicrobial and micro-static activities have caught special attention, particularly in response to the overwhelming apprehension of consumers toward the safety of edible products. However, scientists are paying more interest in using biopesticides and phytochemicals that constitute environmentally favorable, non-toxic, long-lasting, and affordable substitutes for preventing many hazardous plant pathogens. This research aimed to investigate the antifungal properties of sage and tea tree essential oils against taro leaf blight disease-causing significant yield losses. The essential oils of sage and tea tree were obtained by microwave-assisted hydro-distillation, and their chemical components were analyzed using FTIR spectroscopy. The main components of the oil were Thujone and Terpinen-4-ol, in sage and tea tree, respectively. The disease-causal pathogen isolated from symptomatic taro leaves was identified as Phytophthora colocasiae and used as a test fungus. The antifungal properties of both essential oils were evaluated against mycelium, sporangium, zoospores, leaf necrosis, and corm lesions. Repeated experiments showed that the minimum concentrations for obtaining 100% inhibition of mycelium, zoospore germination, sporangia formation, and leaf necrosis were estimated at 2.5 and 5.0 mg/mL for sage and tea tree oils, respectively. The outcomes of this study provide an allusion to the prevention and curation of Taro leaf blight diseases effectively, economically, and environmentally by using phytochemicals and plant essential oil derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed L, Agoo N, Nguyen M et al (2020) Evolutionary origins of taro (Colocasia esculenta) in Southeast Asia. Ecol Evol 10(23):13530–13543

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexandra S, Jamora N, Smale M, Ghanem ME (2020a) The tale of taro leaf blight: a global effort to safeguard the genetic diversity of taro in the Pacific. Food Secur 12:1005–1016

    Article  Google Scholar 

  • Alexandra S, Jamora N, Smale M, Ghanem ME (2020b) The tale of taro leaf blight: a global effort to safeguard the genetic diversity of taro in the Pacific. Food Secur 12:1005–1016

    Article  Google Scholar 

  • Ali A, Chua BL, Chow YH (2019) An insight into the extraction and fractionation technologies of the essential oils and bioactive compounds in Rosmarinus officinalis L.: past, present and future. TrAC Trends Anal Chem 118:338–351. https://doi.org/10.1016/j.trac.2019.05.040

    Article  CAS  Google Scholar 

  • Baysal-Gurel F, Cinar A (2015) First report of leaf blight caused by Phytophthora colocasiae infecting Taro in Turkey. Plant Dis 99(10):1445. https://doi.org/10.1094/PDIS-12-14-1311-PDN

    Article  Google Scholar 

  • Bi Y, Jiang H, Hausbeck MK, Hao JJ (2012) Inhibitory effects of essential oils for controlling Phytophthora capsici. Plant Dis 96(6):797–803. https://doi.org/10.1094/PDIS-11-11-0933

    Article  PubMed  Google Scholar 

  • Bi ME, Teke AN, Christopher S, Annih MG, Charles F (2020) Evaluation of fungicide against taro leaf blight disease caused by phytophthora colocasiae in three agro-ecological zones of cameroon. Asian Res J Agric. https://doi.org/10.9734/arja/2020/v13i330102

    Article  Google Scholar 

  • Brooks (2015) Taro leaf blight. The plant health instructor. DOI: 10.1094. PHI-I-2005-0531-01

  • Brown AC, Ibrahim SA, Song D (2016) Poi history, uses, and role in health. Fruits, vegetables, and herbs. Elsevier, Amsterdam

    Google Scholar 

  • Brun P, Bernabè G, Filippini R, Piovan A (2019) In vitro antimicrobial activities of commercially available tea tree (Melaleuca alternifolia) essential oils. Curr Microbiol 76(1):108–116. https://doi.org/10.1007/s00284-018-1594-x

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhao G, Ma W et al (2020) Ultrasound pre-treatment combined with microwave-assisted hydrodistillation of essential oils from Perilla frutescens (L.) Britt. leaves and its chemical composition and biological activity. Ind Crops Products 143:111908

    Article  CAS  Google Scholar 

  • Chidi B, Khaddor, (2020) Antifungal effect of the tea tree essential oil (Melaleuca alternifolia) against Penicillium griseofulvum and Penicillium verrucosum. J King Saud Univ Sci 32(3):2041–2045

    Article  Google Scholar 

  • Craft J, Satyal P, Setzer W (2017) The chemotaxonomy of common sage (Salvia officinalis) based on the volatile constituents. Medicines 4(3):47. https://doi.org/10.3390/medicines4030047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebani N, Bertelloni G, Ruffoni D et al (2018) Activity of Salvia dolomitica and Salvia somalensis essential oils against bacteria, molds and yeasts. Molecules 23(2):396

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmi V, Barone C, Filippini P et al (2019) In vitro effects of tea tree oil (Melaleuca Alternifolia essential oil) and its principal component terpinen-4-ol on swine spermatozoa. Molecules 24(6):1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elyemni M, Louaste B, Nechad I, Elkamli T, Bouia A, Taleb M et al. (2019) Extraction of essential oils of Rosmarinus officinalis L. by two different methods: Hydrodistillation and microwave assisted hydrodistillation. The Scientific World Journal

  • Gemeda N, Woldeamanuel Y, Asrat D, Debella A (2014) Effect of essential oils on Aspergillus spore germination, growth and mycotoxin production: a potential source of botanical food preservative. Asian Pacific J Trop Biomed 4:S373–S381. https://doi.org/10.12980/APJTB.4.2014C857

    Article  Google Scholar 

  • Hu Tu, Thakur Hu, Li Z et al (2019) Comparison of antifungal activity of essential oils from different plants against three fungi. Food Chem Toxicol 134:110821

    Article  CAS  PubMed  Google Scholar 

  • Jeeva ML, Veena SS, Makeshkumar T, Arutselvan R (2020) Potential strategies to mitigate emerging diseases of tropical tuber crops. Harnessing the Potential of Tropical Tuber Crops, 70

  • Khan SN, Khan S, Iqbal J, Khan R, Khan AU (2017) Enhanced killing and antibiofilm activity of encapsulated cinnamaldehyde against Candida albicans. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01641

    Article  PubMed  PubMed Central  Google Scholar 

  • Lahlou M (2004) Methods to study the phytochemistry and bioactivity of essential oils. Phytothe Res 18(6):435–448. https://doi.org/10.1002/ptr.1465

    Article  CAS  Google Scholar 

  • Liao X, Zhou Y, Tang H et al (2017) Chemical composition, insecticidal and biochemical effects of Melaleuca alternifolia essential oil on the Helicoverpa armigera. J Appl Entomol 141(9):721–728

    Article  CAS  Google Scholar 

  • López-Meneses S-M, Quintana-Obregón P-V, González-Aguilar L-S et al (2017) In vitro antifungal activity of essential oils and major components against fungi plant pathogens. J Phytopathol 165(4):232–237

    Article  Google Scholar 

  • Lucas JA (2009) Plant pathology and plant pathogens. Wiley, New York

    Google Scholar 

  • Matheron ME, Porchas M (2000) Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-Al, and Metalaxyl on growth, sporulation, and zoospore cyst germination of three Phytophthora spp. Plant Dis 84(4):454–458. https://doi.org/10.1094/PDIS.2000.84.4.454

    Article  CAS  PubMed  Google Scholar 

  • Nath H, Jeeva M, Veena R et al (2015) Morphological, pathological and molecular characterization of Phytophthora colocasiae responsible for taro leaf blight disease in India. Phytoparasitica 43(1):21–35

    Article  Google Scholar 

  • Nazzaro F, Fratianni F, Coppola R, De Feo V (2017) Essential oils and antifungal activity. Pharmaceuticals 10(4):86. https://doi.org/10.3390/ph10040086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olmedo-Velarde L, Kong W, Wang Hu et al (2022) Examination of the virome of taro plants affected by a lethal disease, the Alomae-Bobone virus complex. Papua New Guinea Viruses 14(7):1410

    CAS  PubMed  Google Scholar 

  • Połeć K, Wójcik A, Flasiński M, Wydro P, Broniatowski M, Hąc-Wydro K (2019) The influence of terpinen-4-ol and eucalyptol – The essential oil components - on fungi and plant sterol monolayers. Biochimica et Biophysica Acta (BBA) - Biomembranes 1861(6):1093–1102. https://doi.org/10.1016/j.bbamem.2019.03.015

    Article  CAS  PubMed  Google Scholar 

  • Radulović NS, Genčić MS, Stojanović NM, Randjelović PJ, Stojanović-Radić ZZ, Stojiljković NI (2017) Toxic essential oils. Part V: behaviour modulating and toxic properties of thujones and thujone-containing essential oils of Salvia officinalis L., Artemisia absinthium L., Thuja occidentalis L. and Tanacetum vulgare L. Food Chem Toxicol 105:355–369. https://doi.org/10.1016/j.fct.2017.04.044

    Article  CAS  PubMed  Google Scholar 

  • Sameza B, Nguemezi M, Dongmo B et al (2014) Potential use of Eucalyptus globulus essential oil against Phytophthora colocasiae the causal agent of taro leaf blight. Eur J Plant Pathol 140(2):243–250

    Article  CAS  Google Scholar 

  • Shahina Z, El-Ganiny AM, Minion J, Whiteway M, Sultana T, Dahms TE (2018) Cinnamomum zeylanicum bark essential oil induces cell wall remodelling and spindle defects in Candida albicans. Fungal Biology Biotechnol 5(1):1–16

    Article  Google Scholar 

  • Sharma S, Jan R, Kaur R, Riar CS (2020) Taro (Colocasia esculenta). In: Antioxidants in vegetables and nuts-properties and health benefits: Springer (pp 341-353)

  • Shreaz W, Behbehani R, Irshad K et al (2016) Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia 112:116–131

    Article  CAS  PubMed  Google Scholar 

  • Silveira MP, Silva HC, Pimentel IC, Poitevin CG, da Costa Stuart AK, Carpiné D et al (2020) Development of active cassava starch cellulose nanofiber-based films incorporated with natural antimicrobial tea tree essential oil. J Appl Polym Sci 137(21):48726

    Article  CAS  Google Scholar 

  • Sun Qi, Shang Bo, Wang Ling, Zhisong Lu, Liu Yang (2016) Cinnamaldehyde inhibits fungal growth and aflatoxin B1 biosynthesis by modulating the oxidative stress response of Aspergillus flavus. Appl Microbiol Biotechnol 100(3):1355–1364. https://doi.org/10.1007/s00253-015-7159-z

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Li J, Sun Y, Chen Q, Zhang L, Le T (2020) The antifungal effects of cinnamaldehyde against Aspergillus niger and its application in bread preservation. Food Chemstry 317:126405

    Article  CAS  Google Scholar 

  • Szutt A, Dołhańczuk-Śródka A, Sporek M (2019) Evaluation of chemical composition of essential oils derived from different pelargonium species leaves. Ecol Chem Eng S 26(4):807–816. https://doi.org/10.1515/eces-2019-0057

    Article  CAS  Google Scholar 

  • Tchameni SN, Mbiakeu SN, Sameza ML, Jazet PMD, Tchoumbougnang F (2018) Using Citrus aurantifolia essential oil for the potential biocontrol of Colocasia esculenta (taro) leaf blight caused by Phytophthora colocasiae. Environ Sci Pollut Res 25(30):29929–29935. https://doi.org/10.1007/s11356-017-0506-0

    Article  CAS  Google Scholar 

  • Teker T, Sefer Ö, Gazdağlı A, Yörük E, Varol GI, Albayrak G (2021) α-Thujone exhibits an antifungal activity against F. graminearum by inducing oxidative stress, apoptosis, epigenetics alterations and reduced toxin synthesis. Eur J Plant Pathol 160(3):611–622

    Article  CAS  Google Scholar 

  • Vasconcelos LC, de Souza SE, de Oliveira BC, da Silva Ferreira MF, Ferreira A, Tuler AC et al (2019) Phytochemical analysis and effect of the essential oil of Psidium L. species on the initial development and mitotic activity of plants. Environ Sci Pollut Res 26(25):26216–26228

    Article  CAS  Google Scholar 

  • Vinatoru M, Mason TJ, Calinescu I (2017) Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends Anal Chem 97:159–178. https://doi.org/10.1016/j.trac.2017.09.002

    Article  CAS  Google Scholar 

  • Walker CA, van West P (2007) Zoospore development in the oomycetes. Fungal Biology Rev 21(1):10–18. https://doi.org/10.1016/j.fbr.2007.02.001

    Article  Google Scholar 

  • Wang Li, Jiang T, Tang Li et al (2018) Green and solvent-free simultaneous ultrasonic-microwave assisted extraction of essential oil from white and black peppers. Ind Crops Prod 114:164–172

    Article  CAS  Google Scholar 

  • Wang D, Zhang J, Jia X, Xin L, Zhai H (2019) Antifungal effects and potential mechanism of essential oils on Collelotrichum gloeosporioides in vitro and in vivo. Molecules 24(18):3386. https://doi.org/10.3390/molecules24183386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Bao J, Lv L, Lin L, Li Z, Shi M et al (2021) Genome sequence resource of Phytophthora colocasiae from china using Nanopore sequencing technology. Plant Dis 105(12):4141–4145. https://doi.org/10.1094/PDIS-11-20-2327-A

    Article  PubMed  Google Scholar 

  • Yasin Y, Javed A, Ahsan S et al (2021) River tea tree oil: composition, antimicrobial and antioxidant activities, and potential applications in agriculture. Plants 10(10):2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazgan H (2020) Investigation of antimicrobial properties of sage essential oil and its nanoemulsion as antimicrobial agent. LWT 130:109669. https://doi.org/10.1016/j.lwt.2020.109669

    Article  CAS  Google Scholar 

  • Yu D, Wang J, Shao X, Xu F, Wang H (2015) Antifungal modes of action of tea tree oil and its two characteristic components against Botrytis cinerea. J Appl Microbiol 119(5):1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Guo Z, Mao Z et al (2019) Fumigation and contact activities of 18 plant essential oils on Villosiclava virens, the pathogenic fungus of rice false smut. Sci Rep 9(1):1–10

    Google Scholar 

Download references

Acknowledgements

The research is funded by the national modern agricultural industry technology team’s Sichuan oil rape innovation team (SCCXTD-2021-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Kalhoro, M.T., Huo, D. et al. Screening antifungal properties of essential oils against taro leaf blight disease. J Plant Dis Prot 130, 599–608 (2023). https://doi.org/10.1007/s41348-023-00706-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-023-00706-y

Keywords

Navigation