Skip to main content

Advertisement

Log in

Slaughter cattle to secure food calories and reduce agricultural greenhouse gas emissions? Some prospective estimates for France

  • Research Article
  • Published:
Review of Agricultural, Food and Environmental Studies Aims and scope Submit manuscript

Abstract

We assess the potential for increasing the net amount of food calories produced by French agriculture and the possible implications in terms of greenhouse gas emissions and agricultural area allocation. This analysis is based on an agricultural supply model for the European Union mainly with regard to arable crops, meadows, fodder crops, and the main animal products. The model calculates the variations in agricultural greenhouse gas emissions associated with the required level of production. Within the framework of a prospective approach carried out under the technical and economic conditions of the period 2007–2012, we calculate the extent of the changes in an agricultural production system, to which we assign the objective of increasing the net production of calories. In France, for an increase of 40 to 60% depending on the year, three-quarters of meadows would disappear, a large proportion of temporary meadows would switch to cereals, and fallows could exceed 20% of the total agricultural area. These changes would result from the sharp fall in livestock, especially of cattle for meat. The key factor in the analysis is animal feed, which, in addition to the decrease in grass consumption, would lead to a slight increase in fodder and cereals produced and consumed on the farm, and a sharp decrease of around 50% in the purchase of concentrated feeds. The reduction in greenhouse gas emissions is substantial, at least in terms of methane, and could exceed 30% of reference emissions in carbon dioxide equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Note that we leave aside the question of the food quality.

References

  • Aleksandrowicz, L., Green, R., Joy, E.J.M, Smith, P., & Haines, A. (2016). The Impacts of Dietary Change on Greenhouse Gas Emissions, Land Use, Water Use, and Health: A Systematic Review. PLoS One, 11(1). https://doi.org/10.1371/journal.pone.0165797.

  • Aubert, P.-M., Schwoob, M.-H., & Poux, X. (2019). Agroecology and carbon neutrality in europe by 2050: what are the issues? Technical report, IDDRI, https://www.iddri.org/sites/default/files/PDF/Publications/Catalogue%20Iddri/Etude/201904-ST0219-TYFA%20GHG_0.pdf.

  • Bajzelj, B., Richards, K., Allwood, J., Smith, P., Dennis, J., Curmi, E., & Gilligan, C. (2014). The importance of food demand management for climate mitigation. Nature Climate Change, 4, 924–929. https://doi.org/10.1038/nclimate2353.

    Article  Google Scholar 

  • Beddington, J., Asaduzzaman, M., Fernández, A., Clark, M., Guillou, M., Jahn, M., Erda, L., Mamo, T., Van Bo, N., Nobre, C., Scholes, R., Sharma, R., & Wakhungu, J. (2012). Achieving food security in the face of climate change: Final report from the Commission on Sustainable Agriculture and Climate Change. Technical report, CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen.

  • Berners-Lee, M., Kennelly, C., Watson, R., & Hewitt, C. N. (2018). Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elementa Science for the Anthropocene, 6(1).

  • Brent, F.K., Santo, R.E., Scatterday, A.P., Fry, J.P., Synk, C.M., Cebron, S.R., Mekonnen, M.M., Hoekstra, A.Y., de Pee, S., Bloem, M.W., Neff, R.A., & Nachman, K.E. (2019). Country-specific dietary shifts to mitigate climate and water crises. Global Environmental Change. https://doi.org/10.1016/j.gloenvcha.2019.05.010.

  • Bryngelsson, D., Wirsenius, S., Hedenus, F., & Sonesson, U. (2016). How can the EU climate targets be met? A combined analysis of technological and demand-side changes in food and agriculture. Food Policy, 59, 152–164.

    Article  Google Scholar 

  • Burney, J., Davis, S., & Lobell, D. (2010). Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences of the United States of America (PNAS) Early Edition.

  • De Cara, S., Houzé, M., & Jayet, P.-A. (2005). Methane and Nitrous Oxide Emissions from Agriculture in the EU: A Spatial Assessment of Sources and Abatement Costs. Environmental & Resource Economics, 32, 551–583.

    Article  Google Scholar 

  • De Cara, S., & Jayet, P.-A. (2011). Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement. Ecological Economics, 70, 1680–1690.

    Article  Google Scholar 

  • De Cara, S., Henry, L., & Jayet, P.-A. (2018). Optimal coverage of an emission tax in the presence of monitoring, reporting, and verification costs. Journal of Environmental Economics and Management, 89, 1–13.

    Article  Google Scholar 

  • FAO. (2003). Les bilans alimentaires. Organisation des Nations Unies pour l’alimentation et l’agriculture.

  • Hedenus, F., Wirsenius, S., & Johansson, D. (2014). The importance of reduced meat and dairy consumption for meeting stringent climate change targets. Climatic Change, 124(1-2), 79–91.

    Article  Google Scholar 

  • Herrero, M., Havlik, P., Valin, H., Notenbaert, A., Rufino, M.C., Thornton, P.K., Blümmel, M., Weiss, F., Grace, D., & Obersteiner, M. (2013). Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proceedings of the National Academy of Sciences of the United States of America, 110(52), 20888–20893.

    Article  Google Scholar 

  • IPCC. (2001). Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories Technical report. Japan: Institute for Global Environmental Strategies (IGES).

    Google Scholar 

  • Jayet, P. -A., Petsakos, A., Chakir, R., Lungarska, A., De Cara, S., Petel, E., Humblot, P., Godard, C., Leclėre, D., Cantelaube, P., Bourgeois, C., Clodic, M., Bamiėre, L., Ben Fradj, N., Aghajanzadeh-Darzi, P., Dumollard, G., Isbăşoiu, A., Adrian, J., Pilchak, G., Bounaffaa, M., Barberis, D., Assaiante, C., Ollier, M., Henry, L., & Florio, A. (2019). The European agro-economic AROPAj model https://www6.versailles-grignon.inra.fr/economie_publique_eng/Research- work: INRA, UMR Economie Publique.

  • Leip, A., Weiss, F., Lesschen, J.P., & Westhoek, H. (2014). The nitrogen footprint of food products in the European Union. The Journal of Agricultural Science, 152, 20–33.

    Article  Google Scholar 

  • O’Mara, F. (2012). The role of grasslands in food security and climate change. Annals of Botany, 110, 1263–1270.

    Article  Google Scholar 

  • Pellerin, S., Bamiere, L., Launay, C., Martin, R., Schiavo, M., Angers, D., Augusto, L., Balesdent, J., Basile-Doelsch, I., Bellassen, V., & et al. (2019). Stocker du carbone dans les sols français, Quel potentiel au regard de l’objectif de 4 pour 1000 et à quel coût? Synthèse du rapport d’étude. Technical report, http://institut.inra.fr/Missions/Eclairer-les-decisions/Etudes/Toutes-les-actualites/Stocker-4-pour-1000-de-carbone-dans-les-sols-francais.

  • Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., van Wesemael, B., Schumacher, J., & Gensior, A. (2011). Temporal dynamics of soil organic carbon after land-use change in the temperate zone - carbon response functions as a model approach. Global Change Biology, 17, 2415–2427. https://doi.org/10.1111/j.1365-2486.2011.02408.x.

    Article  Google Scholar 

  • Röös, E., Bajželj, B., Smith, P., Patel, M., Little, D., & Garnett, T. (2017). Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Global Environmental Change, 47.

  • Smith, P., Haberl, H., Popp, A., Erb, K. -h., Lauk, C., Harper, R., Tubiello, F.N., de Siqueira Pinto, A., Jafari, M., Sohi, S., Masera, O., Böttcher, H., Berndes, G., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E.A., Mbow, C., Ravindranath, N.H., Rice, C.W., Robledo Abad, C., Romanovskaya, A., Sperling, F., Herrero, M., House, J.I., & Rose, S. (2013). How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?. Global Change Biology, 19, 2285–2302.

    Article  Google Scholar 

  • Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, B., Lassaletta, L., Vries, W., Vermeulen, S., Herrero, M., Carlson, K., Jonell, M., Troell, M., Declerck, F., Gordon, L., Zurayk, R., Scarborough, P., Rayner, M., Loken, B., Fanzo, J., & Willett, W. (2018). Options for keeping the food system within environmental limits. Nature, 562.

  • Springmann, M., Godfray, H.C.J., Rayner, M., & Scarborough, P. (2016). Analysis and valuation of the health and climate change cobenefits of dietary change. Proceedings of the National Academy of Sciences of the United States of America, 113(15), 4146–4151. https://doi.org/10.1073/pnas.1523119113.

    Article  Google Scholar 

  • Thornton, P.K. (2010). Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences., 365, 2853–2867.

    Article  Google Scholar 

  • Tilman, D., & Clark, M. (2014). Global diets link environmental sustainability and human health. Nature, 515, 518–522.

    Article  Google Scholar 

  • Tukker, A., Goldbohm, R. A., de Koning, A., Verheijden, M., Kleijn, R., Wolf, O., Pérez-Domínguez, I., & Rueda-Cantuche, J. M. (2011). Environmental impacts of changes to healthier diets in Europe. Ecological Economics, 70(10), 1776–1788.

    Article  Google Scholar 

  • Valin, H., Havlik, P., Mosnier, A., Herrero, M., Schmid, E., & Obersteiner, M. (2013). Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security? Environmental Research Letters.

  • Van Kernebeek, H.R.J., Oosting, S.J., Van Ittersum, M.K., Bikker, P., & De Boer, I.J.M. (2016). Saving land to feed a growing population: consequences for consumption of crop and livestock products. The International Journal of Life Cycle Assessment, 21(10), 677–687.

    Article  Google Scholar 

  • Weiss, F., & Leip, A. (2012). Greenhouse gas emissions from the EU livestock sector: a life cycle assessment carried out with the CAPRI model. Agriculture, Ecosystems & Environment, 149, 124–134.

    Article  Google Scholar 

  • Westhoek, H., Lesschen, J.P., Rood, T., Wagner, S., De Marco, A., Murphy-Bokern, D., Leip, A., van Grinsven, H., Sutton, M.A., & Oenema, O. (2014). Food choices, health and environment: Effects of cutting Europe’s meat and dairy intake. Global Environmental Change, 26, 196–205.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Michael Westlake for his professional and thorough editorial assistance and Eva Gossiaux for her comments and read-through of the paper. We are also indebted to the reviewers for their very useful comments. The authors take full responsibility for any omissions or deficiencies.

Funding

We conducted this research as part of project DIETPLUS ANR17-CE21-0003 funded by the French National Research Agency (ANR). This work is also part of the Investments d’Avenir Programme overseen by the French National Research Agency (ANR) (LabEx BASC; ANR-11-LABX-0034). The additional support from the CLAND grant (ANR-16-CONV-0003) funded by the French National Research Agency (ANR) under the ”Investissements d’avenir” programme is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Alain Jayet.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 2 GHG emission calculation tiers in the AROPAj model
Table 3 Calorie content of products exported from farms (FAO 2003); the content is weighted by the life duration of the animals in each category (in years), as estimated for the AROPAj model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayet, PA., Isbasoiu, A. & De Cara, S. Slaughter cattle to secure food calories and reduce agricultural greenhouse gas emissions? Some prospective estimates for France. Rev Agric Food Environ Stud 101, 67–90 (2020). https://doi.org/10.1007/s41130-020-00117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41130-020-00117-9

Keywords

Navigation