Skip to main content
Log in

Water-Soluble Carbon Monoxide-Releasing Molecules (CORMs)

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Carbon monoxide-releasing molecules (CORMs) are promising candidates for producing carbon monoxide in the mammalian body for therapeutic purposes. At higher concentrations, CO has a harmful effect on the mammalian organism. However, lower doses at a controlled rate can provide cellular signaling for mandatory pharmacokinetic and pathological activities. To date, exploring the therapeutic implications of CO dose as a prodrug has attracted much attention due to its therapeutic significance. There are two different methods of CO insertion, i.e., indirect and direct exogenous insertion. Indirect exogenous insertion of CO suggests an advantage of reduced toxicity over direct exogenous insertion. For indirect exogenous insertion, researchers are facing the issue of tissue selectivity. To solve this issue, developers have considered the newly produced CORMs. Herein, metal carbonyl complexes (MCCs) are covalently linked with CO molecules to produce different CORMs such as CORM-1, CORM-2, and CORM-3, etc. All these CORMs required exogenous CO insertion to achieve the therapeutic targets at the optimized rate under peculiar conditions or/and triggering. Meanwhile, the metal residue was generated from i-CORMs, which can propagate toxicity. Herein, we explain CO administration, water-soluble CORMs, tissue accumulation, and cytotoxicity of depleted CORMs and the kinetic profile of CO release.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Copyright FASEB

Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Copyright 2016 Elsevier B.V

Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29.
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43

Similar content being viewed by others

Data Availability

This work is a review article, and as such, readers will need to contact referenced authors to obtain additional information regarding the data presented.

References

  1. Haldane JBS (1927) Carbon monoxide as a tissue poison. Biochem J 21:1068–1075. https://doi.org/10.1042/bj0211068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Douglas CG, Haldane JS, Haldane JBS (1912) The laws of combination of haemoglobin with carbon monoxide and oxygen. J Physiol (Oxford, UK) 44:275–304. https://doi.org/10.1113/jphysiol.1912.sp001517

    Article  CAS  Google Scholar 

  3. Tenhunen R, Marver HS, Schmid R (1969) Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem 244:6388–6394. https://doi.org/10.2136/sssaj2003.1361

    Article  CAS  PubMed  Google Scholar 

  4. Tenhunen R, Marver HS, Schmid R (1968) The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA 61:748–755. https://doi.org/10.2307/59140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kocer G, Nasircilar US, Senturk UK (2018) The contribution of carbon monoxide to vascular tonus. Microcirculation 25:e12495. https://doi.org/10.1111/micc.12495

    Article  CAS  PubMed  Google Scholar 

  6. Peng J, Hu T, Li J, Du J, Zhu K, Cheng B, Li K (2019) Shepherd’s Purse polyphenols exert its anti-inflammatory and antioxidative effects associated with suppressing MAPK and NF-kappaB pathways and heme oxygenase-1 activation. Oxid Med Cell Longev 2019:7202695. https://doi.org/10.1155/2019/7202695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heinemann SH, Hoshi T, Westerhausen M, Schiller A (2014) Carbon monoxide–physiology, detection and controlled release. Chem Commun 50:3644–3660. https://doi.org/10.1039/c3cc49196j

    Article  CAS  Google Scholar 

  8. Otterbein LE (2009) The evolution of carbon monoxide into medicine. Respir Care 54:925–932. https://doi.org/10.4187/002013209793800394

    Article  PubMed  Google Scholar 

  9. Omaye ST (2002) Metabolic modulation of carbon monoxide toxicity. Toxicology 180:139–150. https://doi.org/10.1016/S0300-483X(02)00387-6

    Article  CAS  PubMed  Google Scholar 

  10. Siow RCM, Sato H, Mann GE (1999) Heme oxygenase–carbon monoxide signalling pathway in atherosclerosis: anti-atherogenic actions of bilirubin and carbon monoxide? Cardiol Res 41:385–394. https://doi.org/10.1016/s0008-6363(98)00278-8

    Article  CAS  Google Scholar 

  11. Maurya RC, Mir JM (2021) Nitric oxide, carbon monoxide, and hydrogen sulfide as biologically important signaling molecules with the significance of their respective donors in ophthalmic diseases. Chem Biol Potent Nat Prod Syn Compds 20:343–378. https://doi.org/10.1002/9781119640929.ch12

    Article  Google Scholar 

  12. Faizan M, Niazi KUK, Muhammad N, Hu Y, Wang Y, Lin D, Liu Y, Zhang W, Gao Z (2019) The intercalation of CORM-2 with pharmaceutical clay montmorillonite (MMT) aids for therapeutic carbon monoxide release. Intern J Mol Sci 20:3453. https://doi.org/10.3390/ijms20143453

    Article  CAS  Google Scholar 

  13. Yang S, Chen M, Zhou L, Zhang G, Gao Z, Zhang W (2016) Photo-activated CO-releasing molecules (PhotoCORMs) of robust sawhorse scaffolds [μ2-OOCR1, η1-NH2CHR2(C–O] OCH3, Ru(i)2CO4]. Dalt Trans 45:3727–3733. https://doi.org/10.1039/C5DT04479K

    Article  CAS  Google Scholar 

  14. Crespy D, Landfester K, Schubert US, Schiller A (2010) Potential photoactivated metallopharmaceuticals: from active molecules to supported drugs. Chem Commun 46:6651–6662. https://doi.org/10.1039/C0CC01887B

    Article  CAS  Google Scholar 

  15. Pieretti JC, Pelegrino MT, Boudier A, Seabra AB (2021) Recent progress in the toxicity of nitric oxide-releasing nanomaterials. Mater Adv. https://doi.org/10.1039/D1MA00532D

    Article  Google Scholar 

  16. Stucki D, Krahl H, Walter M, Steinhausen J, Hommel K, Brenneisen P, Stahl W (2020) Effects of frequently applied carbon monoxide releasing molecules (CORMs) in typical CO-sensitive model systems—a comparative in vitro study. Arch Biochem Biophys 687:108383. https://doi.org/10.1016/j.abb.2020.108383

    Article  CAS  PubMed  Google Scholar 

  17. Jiang X, Xiao Z, Zhong W, Liu X (2021) Brief survey of diiron and monoiron carbonyl complexes and their potentials as CO-releasing molecules (CORMs). Coord Chem Rev 429:213634. https://doi.org/10.1016/j.ccr.2020.213634

    Article  CAS  Google Scholar 

  18. Bremner J (2021) Design principles and development of prodrugs for multiply active antibacterials. In: Bremner J (ed) Multi act-bas desgn app antibact. Springer Singapore, Singapore, pp 121–158. https://doi.org/10.1007/978-981-16-0999-2_4

    Chapter  Google Scholar 

  19. Ling K, Men F, Wang W-C, Zhou Y-Q, Zhang H-W, Ye D-W (2018) Carbon monoxide and its controlled release: therapeutic application, detection, and development of carbon monoxide releasing molecules (CORMs). J Med Chem 61:2611–2635. https://doi.org/10.1021/acs.jmedchem.6b01153

    Article  CAS  PubMed  Google Scholar 

  20. Ryter SW, Choi AM (2007) Cytoprotective and anti-inflammatory actions of carbon monoxide in organ injury and sepsis models. Novartis Found Symp 280:165–175. https://doi.org/10.1002/9780470059593.ch12

    Article  CAS  PubMed  Google Scholar 

  21. Motterlini R, Mann BE, Foresti R (2005) Therapeutic applications of carbon monoxide-releasing molecules. Expert Opin Investig Drugs 14:1305–1318. https://doi.org/10.1517/13543784.14.11.1305

    Article  CAS  PubMed  Google Scholar 

  22. Bojakowski K, Gaciong Z, Grochowiecki T, Szmidt J (2007) Carbon monoxide may reduce ischemia reperfusion injury: a case report of complicated kidney transplantation from a carbon monoxide poisoned donor. Transplant Proc 39:2928–2929. https://doi.org/10.1016/j.transproceed.2007.08.063

    Article  CAS  PubMed  Google Scholar 

  23. Otterbein LE, Soares MP, Yamashita K, Bach FH (2003) Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol 24:449–455. https://doi.org/10.1016/S1471-4906(03)00181-9

    Article  CAS  PubMed  Google Scholar 

  24. Al-Huseini LM, Aw Yeang HX, Hamdam JM, Sethu S, Alhumeed N, Wong W, Sathish JG (2014) Heme oxygenase-1 regulates dendritic cell function through modulation of p38 MAPK-CREB/ATF1 signaling. J Biol Chem 289:16442–16451. https://doi.org/10.1074/jbc.M113.532069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Otterbein LE (2002) Carbon monoxide: innovative anti-inflammatory properties of an age-old gas molecule. Antioxid Red Sig 4:309–319. https://doi.org/10.1089/152308602753666361

    Article  CAS  Google Scholar 

  26. Joshi HP, Kim SB, Kim S, Kumar H, Jo M-J, Choi H, Kim J, Kyung JW, Sohn S, Kim K-T, Kim J-K, Han I-B (2019) Nanocarrier-mediated delivery of CORM-2 enhances anti-allodynic and anti-hyperalgesic effects of CORM-2. Mol Neurol 20:20. https://doi.org/10.1007/s12035-019-1468-7

    Article  CAS  Google Scholar 

  27. Motterlini R, Haas B, Foresti R (2012) Emerging concepts on the anti-inflammatory actions of carbon monoxide-releasing molecules (CO-RMs). Med Gas Res 2:28. https://doi.org/10.1186/2045-9912-2-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zamani M, Aleyasin A, Fakhrzadeh H, Kiavar M, Raoufzadeh S, Larijani B, Mahmoodi E (2010) Heme oxigenase 2 gene polymorphisms as genetic risk factor in atherosclerosis in iranian patients. Iran Red Crescent Med J 12:559–563. https://doi.org/10.1007/s00108-010-2705-3

    Article  Google Scholar 

  29. Kohmoto J, Nakao A, Sugimoto R, Wang Y, Zhan J, Ueda H, McCurry KR (2008) Carbon monoxide-saturated preservation solution protects lung grafts from ischemia-reperfusion injury. J Thorac Cardio Surg 136:1067–1075. https://doi.org/10.1016/j.jtcvs.2008.06.026

    Article  Google Scholar 

  30. Minamoto K, Harada H, Lama VN, Fedarau MA, Pinsky DJ (2005) Reciprocal regulation of airway rejection by the inducible gas-forming enzymes heme oxygenase and nitric oxide synthase. J Exp Med 202:283–294. https://doi.org/10.1084/jem.20050377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee SS, Gao W, Mazzola S, Thomas MN, Csizmadia E, Otterbein LE, Bach FH, Wang H (2007) Heme oxygenase-1, carbon monoxide, and bilirubin induce tolerance in recipients toward islet allografts by modulating T regulatory cells. Faseb J 21:3450–3457. https://doi.org/10.1096/fj.07-8472com

    Article  CAS  PubMed  Google Scholar 

  32. Pizarro MD, Rodriguez JV, Mamprin ME, Fuller BJ, Mann BE, Motterlini R, Guibert EE (2009) Protective effects of a carbon monoxide-releasing molecule (CORM-3) during hepatic cold preservation. Cryobiology 58:248–255. https://doi.org/10.1016/j.cryobiol.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  33. Kaizu T, Ikeda A, Nakao A, Tsung A, Toyokawa H, Ueki S, Geller DA, Murase N (2008) Protection of transplant-induced hepatic ischemia/reperfusion injury with carbon monoxide via MEK/ERK1/2 pathway downregulation. Am J Physiol Gastrol Liv Phys 294:G236–G244. https://doi.org/10.1152/ajpgi.00144.2007

    Article  CAS  Google Scholar 

  34. Sato K, Balla J, Otterbein L, Smith RN, Brouard S, Lin Y, Csizmadia E, Sevigny J, Robson SC, Vercellotti G, Choi AM, Bach FH, Soares MP (2001) Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J Immunol 166:4185–4194

    Article  CAS  PubMed  Google Scholar 

  35. Chen B, Guo L, Fan C, Bolisetty S, Joseph R, Wright MM, Agarwal A, George JF (2009) Carbon monoxide rescues heme oxygenase-1-deficient mice from arterial thrombosis in allogeneic aortic transplantation. Am J Pathol 175:422–429. https://doi.org/10.2353/ajpath.2009.081033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Clark JE, Naughton P, Shurey S, Green CJ, Johnson TR, Mann BE, Foresti R, Motterlini R (2003) Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ Res 93:e2-8. https://doi.org/10.1161/01.res.0000084381.86567.08

    Article  CAS  PubMed  Google Scholar 

  37. Nakao A, Toyokawa H, Tsung A, Nalesnik MA, Stolz DB, Kohmoto J, Ikeda A, Tomiyama K, Harada T, Takahashi T, Yang R, Fink MP, Morita K, Choi AM, Murase N (2006) Ex vivo application of carbon monoxide in University of Wisconsin solution to prevent intestinal cold ischemia/reperfusion injury. Am J Transplant 6:2243–2255. https://doi.org/10.1111/j.1600-6143.2006.01465.x

    Article  CAS  PubMed  Google Scholar 

  38. Bagul A, Hosgood SA, Kaushik M, Nicholson ML (2008) Carbon monoxide protects against ischemia-reperfusion injury in an experimental model of controlled nonheartbeating donor kidney. Transplantation 85:576–581. https://doi.org/10.1097/TP.0b013e318160516a

    Article  CAS  PubMed  Google Scholar 

  39. Yoshida J, Ozaki KS, Nalesnik MA, Ueki S, Castillo-Rama M, Faleo G, Ezzelarab M, Nakao A, Ekser B, Echeverri GJ, Ross MA, Stolz DB, Murase N (2010) Ex vivo application of carbon monoxide in UW solution prevents transplant-induced renal ischemia/reperfusion injury in pigs. Am J Transplant 10:763–772. https://doi.org/10.1111/j.1600-6143.2010.03040.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sandouka A, Fuller BJ, Mann BE, Green CJ, Foresti R, Motterlini R (2006) Treatment with CO-RMs during cold storage improves renal function at reperfusion. Kidney Int 69:239–247. https://doi.org/10.1038/sj.ki.5000016

    Article  CAS  PubMed  Google Scholar 

  41. Nakao A, Faleo G, Shimizu H, Nakahira K, Kohmoto J, Sugimoto R, Choi AM, McCurry KR, Takahashi T, Murase N (2008) Ex vivo carbon monoxide prevents cytochrome P450 degradation and ischemia/reperfusion injury of kidney grafts. Kidney Int 74:1009–1016. https://doi.org/10.1038/ki.2008.342

    Article  CAS  PubMed  Google Scholar 

  42. Motterlini R, Otterbein LE (2010) The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 9:728–743. https://doi.org/10.1038/nrd3228

    Article  CAS  PubMed  Google Scholar 

  43. Chakraborty I, Carrington SJ, Roseman G, Mascharak PK (2017) Synthesis, structures, and CO release capacity of a family of water-soluble photoCORMs: assessment of the biocompatibility and their phototoxicity toward human breast cancer cells. Inorg Chem 56:1534–1545. https://doi.org/10.1021/acs.inorgchem.6b02623

    Article  CAS  PubMed  Google Scholar 

  44. Johnson TR, Mann BE, Teasdale IP, Adams H, Foresti R, Green CJ, Motterlini R (2007) Metal carbonyls as pharmaceuticals? [Ru(CO)3Cl(glycinate)], a CO-releasing molecule with an extensive aqueous solution chemistry. Dalt Trans 20:1500–1508. https://doi.org/10.1039/B613629J

    Article  Google Scholar 

  45. Gong Y, Zhang T, Li M, Xi N, Zheng Y, Zhao Q, Chen Y, Liu B (2016) Toxicity, bio-distribution and metabolism of CO-releasing molecules based on cobalt. Free Radic Biol Med 97:362–374. https://doi.org/10.1016/j.freeradbiomed.2016.06.029

    Article  CAS  PubMed  Google Scholar 

  46. Zhang WQ, Atkin AJ, Thatcher RJ, Whitwood AC, Fairlamb IJ, Lynam JM (2009) Diversity and design of metal-based carbon monoxide-releasing molecules (CO-RMs) in aqueous systems: revealing the essential trends. Dalt Trans 20:4351–4358. https://doi.org/10.1039/b822157j

    Article  CAS  Google Scholar 

  47. Wareham LK, McLean S, Begg R, Rana N, Ali S, Kendall JJ, Sanguinetti G, Mann BE, Poole RK (2018) The Broad-Spectrum antimicrobial potential of [Mn(CO)4(S2CNMe(CH2CO2H))], a water-soluble CO-releasing molecule (CORM-401): intracellular accumulation, transcriptomic and statistical analyses, and membrane polarization. Antioxid Red Sig 28:1286–1308. https://doi.org/10.1089/ars.2017.7239

    Article  CAS  Google Scholar 

  48. Stamellou E, Storz D, Botov S, Ntasis E, Wedel J, Sollazzo S, Krämer BK, van Son W, Seelen M, Schmalz HG, Schmidt A, Hafner M, Yard BA (2014) Different design of enzyme-triggered CO-releasing molecules (ET-CORMs) reveals quantitative differences in biological activities in terms of toxicity and inflammation. Redox Biol 2:739–748. https://doi.org/10.1016/j.redox.2014.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schatzschneider U (2011) PhotoCORMs: Light-triggered release of carbon monoxide from the coordination sphere of transition metal complexes for biological applications. Inorg Chim Acta 374:19–23. https://doi.org/10.1016/j.ica.2011.02.068

    Article  CAS  Google Scholar 

  50. Palao E, Slanina T, Muchová L, Šolomek T, Vítek L, Klán P (2016) Transition-metal-free CO-releasing BODIPY derivatives activatable by visible to NIR light as promising bioactive molecules. J Am Chem Soc 138:126–133. https://doi.org/10.1021/jacs.5b10800

    Article  CAS  PubMed  Google Scholar 

  51. Antony LA, Slanina T, Sebej P, Solomek T, Klan P (2013) Fluorescein analogue xanthene-9-carboxylic acid: a transition-metal-free CO releasing molecule activated by green light. Org Lett 15:4552–4555. https://doi.org/10.1021/ol4021089

    Article  CAS  PubMed  Google Scholar 

  52. Peng P, Wang C, Shi Z, Johns VK, Ma L, Oyer J, Copik A, Igarashi R, Liao Y (2013) Visible-light activatable organic CO-releasing molecules (PhotoCORMs) that simultaneously generate fluorophores. Org Biomol Chem 11:6671–6674. https://doi.org/10.1039/c3ob41385c

    Article  CAS  PubMed  Google Scholar 

  53. Farrer NJ, Salassa L, Sadler PJ (2009) Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalt Trans 20:10690–10701. https://doi.org/10.1039/B917753A

    Article  Google Scholar 

  54. Pierri AE, Pallaoro A, Wu G, Ford PC (2012) A luminescent and biocompatible photoCORM. J Am Chem Soc 134:18197–18200. https://doi.org/10.1021/ja3084434

    Article  CAS  PubMed  Google Scholar 

  55. Motterlini R, Clark JE, Foresti R, Sarathchandra P, Mann BE, Green CJ (2002) Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ Res 90:E17-24. https://doi.org/10.1161/hh0202.104530

    Article  CAS  PubMed  Google Scholar 

  56. Rimmer RD, Richter H, Ford PC (2010) A photochemical precursor for carbon monoxide release in aerated aqueous media. Inorg Chem 49:1180–1185. https://doi.org/10.1021/ic902147n

    Article  CAS  PubMed  Google Scholar 

  57. Romão CC, Blättler WA, Seixas JD, Bernardes GJL (2012) Developing drug molecules for therapy with carbon monoxide. Chem Soc Rev 41:3571–3583. https://doi.org/10.1039/C2CS15317C

    Article  PubMed  Google Scholar 

  58. Schatzschneider U (2010) Photoactivated biological activity of transition-metal complexes. Eur J Inorg Chem 2010:1451–1467. https://doi.org/10.1002/ejic.201000003

    Article  CAS  Google Scholar 

  59. Marks GS, Vreman HJ, McLaughlin BE, Brien JF, Nakatsu K (2002) Measurement of endogenous carbon monoxide formation in biological systems. Antioxid Red Sig 4:271–277. https://doi.org/10.1089/152308602753666325

    Article  CAS  Google Scholar 

  60. Morimoto Y, Durante W, Lancaster DG, Klattenhoff J, Tittel FK (2001) Real-time measurements of endogenous CO production from vascular cells using an ultrasensitive laser sensor. Am J Physiol Heart Circ Physiol 280:H483-488. https://doi.org/10.1152/ajpheart.2001.280.1.H483

    Article  CAS  PubMed  Google Scholar 

  61. Hasegawa U, van der Vlies AJ, Simeoni E, Wandrey C, Hubbell JA (2010) Carbon monoxide-releasing micelles for immunotherapy. J Am Chem Soc 132:18273–18280. https://doi.org/10.1021/ja1075025

    Article  CAS  PubMed  Google Scholar 

  62. Park SS, Kim J, Lee Y (2012) Improved electrochemical microsensor for the real-time simultaneous analysis of endogenous nitric oxide and carbon monoxide generation. Anal Chem 84:1792–1796. https://doi.org/10.1021/ac2031628

    Article  CAS  PubMed  Google Scholar 

  63. Barbe JM, Canard G, Brandes S, Guilard R (2007) Selective chemisorption of carbon monoxide by organic-inorganic hybrid materials incorporating cobalt(III) corroles as sensing components. Chemistry 13:2118–2129. https://doi.org/10.1002/chem.200601143

    Article  CAS  PubMed  Google Scholar 

  64. McLean S, Mann BE, Poole RK (2012) Sulfite species enhance carbon monoxide release from CO-releasing molecules: implications for the deoxymyoglobin assay of activity. Anal Biochem 427:36–40. https://doi.org/10.1016/j.ab.2012.04.026

    Article  CAS  PubMed  Google Scholar 

  65. Esteban J, Ros-Lis JV, Martinez-Manez R, Marcos MD, Moragues M, Soto J, Sancenon F (2010) Sensitive and selective chromogenic sensing of carbon monoxide by using binuclear rhodium complexes. Ang Chem Int Ed Engl 49:4934–4937. https://doi.org/10.1002/anie.201001344

    Article  CAS  Google Scholar 

  66. Vreman HJ, Stevenson DK (1988) Heme oxygenase activity as measured by carbon monoxide production. Anal Biochem 168:31–38. https://doi.org/10.1016/0003-2697(88)90006-1

    Article  CAS  PubMed  Google Scholar 

  67. Nandi C, Debnath R, Debroy P (2019) Intelligent control systems for carbon monoxide detection in IoT environments. In: Mahmood Z (ed) Guide to ambient intelligence in the iot environment: principles, technologies and applications. Springer International Publishing, Cham, pp 153–176. https://doi.org/10.1007/978-3-030-04173-1_7

    Chapter  Google Scholar 

  68. Yuan L, Lin W, Tan L, Zheng K, Huang W (2013) Lighting up carbon monoxide: fluorescent probes for monitoring CO in living cells. Ang Chem Int Ed Engl 52:1628–1630. https://doi.org/10.1002/anie.201208346

    Article  CAS  Google Scholar 

  69. Michel BW, Lippert AR, Chang CJ (2012) A reaction-based fluorescent probe for selective imaging of carbon monoxide in living cells using a palladium-mediated carbonylation. J Am Chem Soc 134:15668–15671. https://doi.org/10.1021/ja307017b

    Article  CAS  PubMed  Google Scholar 

  70. Narayan SP, Choi CH, Hao L, Calabrese CM, Auyeung E, Zhang C, Goor OJ, Mirkin CA (2015) The sequence-specific cellular uptake of spherical nucleic acid nanoparticle conjugates. Small 11:4173–4182. https://doi.org/10.1002/smll.201500027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Motterlini R, Mann BE, Johnson TR, Clark JE, Foresti R, Green CJ (2003) Bioactivity and pharmacological actions of carbon monoxide-releasing molecules. Curr Pharm Des 9:2525–2539. https://doi.org/10.2174/1381612033453785

    Article  CAS  PubMed  Google Scholar 

  72. García-Gallego S, Bernardes GJL (2014) Carbon-monoxide-releasing molecules for the delivery of therapeutic CO in vivo. Angew Chem Inter Ed 53:9712–9721. https://doi.org/10.1002/anie.201311225

    Article  CAS  Google Scholar 

  73. Dallas ML, Scragg JL, Peers C (2008) Modulation of hTREK-1 by carbon monoxide. NeuroReport 19:345–348. https://doi.org/10.1097/WNR.0b013e3282f51045

    Article  CAS  PubMed  Google Scholar 

  74. Lundvig DM, Immenschuh S, Wagener FA (2012) Heme oxygenase, inflammation, and fibrosis: the good, the bad, and the ugly? Front Pharmacol 3:81. https://doi.org/10.3389/fphar.2012.00081

    Article  PubMed  PubMed Central  Google Scholar 

  75. Szeremeta M, Petelska AD, Kotynska J, Niemcunowicz-Janica A, Figaszewski ZA (2013) The effect of fatal carbon monoxide poisoning on the surface charge of blood cells. J Membr Biol 246:717–722. https://doi.org/10.1007/s00232-013-9591-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Petelska AD, Kotynska J, Figaszewski ZA (2015) The effect of fatal carbon monoxide poisoning on the equilibria between cell membranes and the electrolyte solution. J Membr Biol 248:157–161. https://doi.org/10.1007/s00232-014-9753-x

    Article  CAS  PubMed  Google Scholar 

  77. Wang P, Liu H, Zhao Q, Chen Y, Liu B, Zhang B, Zheng Q (2014) Syntheses and evaluation of drug-like properties of CO-releasing molecules containing ruthenium and group 6 metal. Eur J Med Chem 74:199–215. https://doi.org/10.1016/j.ejmech.2013.12.041

    Article  CAS  PubMed  Google Scholar 

  78. Desmard M, Davidge KS, Bouvet O, Morin D, Roux D, Foresti R, Ricard JD, Denamur E, Poole RK, Montravers P, Motterlini R, Boczkowski J (2009) A carbon monoxide-releasing molecule (CORM-3) exerts bactericidal activity against Pseudomonas aeruginosa and improves survival in an animal model of bacteraemia. Faseb J 23:1023–1031. https://doi.org/10.1096/fj.08-122804

    Article  CAS  PubMed  Google Scholar 

  79. Desmard M, Foresti R, Morin D, Dagouassat M, Berdeaux A, Denamur E, Crook SH, Mann BE, Scapens D, Montravers P, Boczkowski J, Motterlini R (2012) Differential antibacterial activity against Pseudomonas aeruginosa by carbon monoxide-releasing molecules. Antioxid Red Sig 16:153–163. https://doi.org/10.1089/ars.2011.3959

    Article  CAS  Google Scholar 

  80. Winburn IC, Gunatunga K, McKernan RD, Walker RJ, Sammut IA, Harrison JC (2012) Cell damage following carbon monoxide releasing molecule exposure: implications for therapeutic applications. Basic Clin Pharmacol Toxicol 111:31–41. https://doi.org/10.1111/j.1742-7843.2012.00856.x

    Article  CAS  PubMed  Google Scholar 

  81. Schallner N, Otterbein LE (2015) Friend or foe? Carbon monoxide and the mitochondria. Front Physiol 6:17. https://doi.org/10.3389/fphys.2015.00017

    Article  PubMed  PubMed Central  Google Scholar 

  82. Schatzschneider U (2015) Novel lead structures and activation mechanisms for CO-releasing molecules (CORMs). Br J Pharmacol 172:1638–1650. https://doi.org/10.1111/bph.12688

    Article  CAS  PubMed  Google Scholar 

  83. Kautz AC, Kunz PC, Janiak C (2016) CO-releasing molecule (CORM) conjugate systems. Dalt Trans 45:18045–18063. https://doi.org/10.1039/C6DT03515A

    Article  CAS  Google Scholar 

  84. Faizan M, Zhang R, Liu R (2022) Dual nature cupper-based ionic liquid-assisted n-butane selective oxidation with a vanadium phosphorus oxide catalyst. Catal Lett. https://doi.org/10.1007/s10562-022-03962-z

    Article  Google Scholar 

  85. Faizan M, Li Y, Zhang R, Wang X, Song P, Liu R (2021) Progress of vanadium phosphorous oxide catalyst for n-butane selective oxidation. Chin J Chem Eng 43:297–315. https://doi.org/10.1016/j.cjche.2021.10.026

    Article  Google Scholar 

  86. Faizan M, Li Y, Wang X, Song P, Zhang R, Liu R (2022) Rare earth metal based DES assisted the VPO synthesis for n-butane selective oxidation toward maleic anhydride. Green Energy Environ. https://doi.org/10.1016/j.gee.2022.04.007

    Article  Google Scholar 

  87. Faizan M, Niazi KUK, Nawaz H, Muhammad N, Li H, Dai F, Zhang R, Liu R, Zhang S (2021) Mono-, Bi-, and Tri-metallic DES are prepared from Nb, Zr, and Mo for n-butane selective oxidation via VPO catalyst. Processes 9:1487. https://doi.org/10.3390/pr9091487

    Article  CAS  Google Scholar 

  88. Kottelat E, Chabert V, Crochet A, Fromm KM, Zobi F (2015) Towards cardiolite-inspired carbon monoxide releasing molecules—reactivity of d4, d5 rhenium and d6 manganese carbonyl complexes with isocyanide ligands. Eur J Inorg Chem 2015:5628–5638. https://doi.org/10.1002/ejic.201500756

    Article  CAS  Google Scholar 

  89. Zhang W-Q, Atkin AJ, Fairlamb IJS, Whitwood AC, Lynam JM (2011) Synthesis and reactivity of molybdenum complexes containing functionalized alkynyl ligands: a photochemically activated CO-releasing molecule (PhotoCO-RM). Organometallics 30:4643–4654. https://doi.org/10.1021/om200495h

    Article  CAS  Google Scholar 

  90. Finze M, Bernhardt E, Willner H, Lehmann CW, Aubke F (2005) Homoleptic, sigma-bonded octahedral superelectrophilic metal carbonyl cations of iron(II), ruthenium(II), and osmium(II). Part 2: syntheses and characterizations of [M(CO)(6)][BF(4)](2) (M = Fe, Ru, Os). Inorg Chem 44:4206–4214. https://doi.org/10.1021/ic0482483

    Article  CAS  PubMed  Google Scholar 

  91. Li J, Zhang J, Zhang Q, Bai Z, Zhao Q, Wang Z, Chen Y, Liu B (2018) Synthesis and biological activities of carbonyl cobalt CORMs with selectively inhibiting cyclooxygenase-2. J Organomet Chem 874:49–62. https://doi.org/10.1016/j.jorganchem.2018.08.013

    Article  CAS  Google Scholar 

  92. Kretschmer R, Gessner G, Goerls H, Heinemann SH, Westerhausen M (2011) Dicarbonyl-bis(cysteamine)iron(II): A light induced carbon monoxide releasing molecule based on iron (CORM-S1). J Inorg Biochem 105:6–9. https://doi.org/10.1016/j.jinorgbio.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  93. Carmona FJ, Jimenez-Amezcua I, Rojas S, Romao CC, Navarro JAR, Maldonado CR, Barea E (2017) Aluminum doped MCM-41 nanoparticles as platforms for the dual encapsulation of a CO-releasing molecule and cisplatin. Inorg Chem 56:10474–10480. https://doi.org/10.1021/acs.inorgchem.7b01475

    Article  CAS  PubMed  Google Scholar 

  94. Mansour AM, Shehab OR (2018) Reactivity of visible-light induced CO releasing thiourea-based Mn(I) tricarbonyl bromide (CORM-NS1) towards lysozyme. Inorg Chim Acta 480:159–165. https://doi.org/10.1016/j.ica.2018.05.009

    Article  CAS  Google Scholar 

  95. Mede R, Hoffmann P, Klein M, Goerls H, Schmitt M, Neugebauer U, Gessner G, Heinemann SH, Popp J, Westerhausen M (2017) A water-soluble Mn(CO)3-based and non-toxic photoCORM for administration of carbon monoxide inside of cells. Z Anorg Allg Chem 643:2057–2062. https://doi.org/10.1002/zaac.201700349

    Article  CAS  Google Scholar 

  96. Aucott BJ, Ward JS, Andrew SG, Milani J, Whitwood AC, Lynam JM, Parkin A, Fairlamb IJS (2017) Redox-tagged carbon monoxide-releasing molecules (CORMs): ferrocene-containing [Mn(C-N)(CO)4] complexes as a promising new CORM class. Inorg Chem 56:5431–5440. https://doi.org/10.1021/acs.inorgchem.7b00509

    Article  CAS  PubMed  Google Scholar 

  97. Mansour AM (2017) Rapid green and blue light-induced CO release from bromazepam Mn(I) and Ru(II) carbonyls: synthesis, density functional theory and biological activity evaluation. Appl Organomet Chem 31:14. https://doi.org/10.1002/aoc.3564

    Article  CAS  Google Scholar 

  98. Gessner G, Sahoo N, Swain SM, Hirth G, Schonherr R, Mede R, Westerhausen M, Brewitz HH, Heimer P, Imhof D, Hoshi T, Heinemann SH (2017) CO-independent modification of K(+) channels by tricarbonyldichlororuthenium(II) dimer (CORM-2). Eur J Pharmacol 815:33–41. https://doi.org/10.1016/j.ejphar.2017.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Anderson SN, Richards JM, Esquer HJ, Benninghoff AD, Arif AM, Berreau LM (2015) A structurally-tunable 3-hydroxyflavone motif for visible light-induced carbon monoxide-releasing molecules (CORMs). ChemistryOpen 4:590–594. https://doi.org/10.1002/open.201500167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Martins PNA, Reuzel-Selke A, Jurisch A, Atrott K, Pascher A, Pratschke J, Buelow R, Neuhaus P, Volk HD, Tullius SG (2005) Induction of carbon monoxide in the donor reduces graft immunogenicity and chronic graft deterioration. Transpl Procee 37:379–381. https://doi.org/10.1016/j.transproceed.2004.11.079

    Article  CAS  Google Scholar 

  101. Chauveau C, Bouchet D, Roussel J-C, Mathieu P, Braudeau C, Renaudin K, Tesson L, Soulillou J-P, Iyer S, Buelow R, Anegon I (2002) Gene transfer of heme oxygenase-1 and carbon monoxide delivery inhibit chronic rejection. Am J Transpl 2:581–592. https://doi.org/10.1034/j.1600-6143.2002.20702.x

    Article  CAS  Google Scholar 

  102. Mondal R, Okhrimenko AN, Shah BK, Neckers DC (2008) Photodecarbonylation of alpha-diketones: a mechanistic study of reactions leading to acenes. J Phys Chem B 112:11–15. https://doi.org/10.1021/jp076738l

    Article  CAS  PubMed  Google Scholar 

  103. Klein M, Neugebauer U, Schmitt M, Popp J (2016) Elucidation of the CO-release kinetics of CORM-A1 by means of vibrational spectroscopy. ChemPhysChem 17:985–993. https://doi.org/10.1002/cphc.201501062

    Article  CAS  PubMed  Google Scholar 

  104. Motterlini R, Sawle P, Hammad J, Bains S, Alberto R, Foresti R, Green CJ (2005) CORM-A1: a new pharmacologically active carbon monoxide-releasing molecule. Faseb J 19:284–286. https://doi.org/10.1096/fj.04-2169fje

    Article  CAS  PubMed  Google Scholar 

  105. Friis SD, Taaning RH, Lindhardt AT, Skrydstrup T (2011) Silacarboxylic acids as efficient carbon monoxide releasing molecules: synthesis and application in palladium-catalyzed carbonylation reactions. J Am Chem Soc 133:18114–18117. https://doi.org/10.1021/ja208652n

    Article  CAS  PubMed  Google Scholar 

  106. Petrovski Ž, Norton de Matos MRP, Braga SS, Pereira CCL, Matos ML, Gonçalves IS, Pillinger M, Alves PM, Romão CC (2008) Synthesis, characterization and antitumor activity of 1,2-disubstituted ferrocenes and cyclodextrin inclusion complexes. J Organo Chem 693:675–684. https://doi.org/10.1016/j.jorganchem.2007.11.053

    Article  CAS  Google Scholar 

  107. Zobi F, Blacque O (2011) Reactivity of 17 e− complex [ReIIBr 4(CO)2]2− with bridging aromatic ligands. Characterization and CO-releasing properties. Dalt Trans 40:4994–5001. https://doi.org/10.1039/C1DT10110B

    Article  CAS  Google Scholar 

  108. Bohlender C, Gläser S, Klein M, Weisser J, Thein S, Neugebauer U, Popp J, Wyrwa R, Schiller A (2014) Light-triggered CO release from nanoporous non-wovens. J Matr Chem B 2:1454–1463. https://doi.org/10.1039/C3TB21649G

    Article  CAS  Google Scholar 

  109. Carrington SJ, Chakraborty I, Bernard JM, Mascharak PK (2016) A theranostic two-tone luminescent PhotoCORM derived from Re(I) and (2-pyridyl)-benzothiazole: trackable CO delivery to malignant cells. Inorg Chem 55:7852–7858. https://doi.org/10.1021/acs.inorgchem.6b00511

    Article  CAS  PubMed  Google Scholar 

  110. Zhang WQ, Whitwood AC, Fairlamb IJ, Lynam JM (2010) Group 6 carbon monoxide-releasing metal complexes with biologically-compatible leaving groups. Inorg Chem 49:8941–8952. https://doi.org/10.1021/ic101230j

    Article  CAS  PubMed  Google Scholar 

  111. Long L, Jiang X, Wang X, Xiao Z, Liu X (2013) Water-soluble diiron hexacarbonyl complex as a CO-RM: controllable CO-releasing, releasing mechanism and biocompatibility. Dalt Trans 42:15663–15669. https://doi.org/10.1039/c3dt51281a

    Article  CAS  Google Scholar 

  112. Zobi F, Degonda A, Schaub MC, Bogdanova AY (2010) CO releasing properties and cytoprotective effect of cis-trans-[Re(II)(CO)2Br 2L2]n complexes. Inorg Chem 49:7313–7322. https://doi.org/10.1021/ic100458j

    Article  CAS  PubMed  Google Scholar 

  113. Steiger C, Luhmann T, Meinel L (2014) Oral drug delivery of therapeutic gases—carbon monoxide release for gastrointestinal diseases. J Control Release 189:46–53. https://doi.org/10.1016/j.jconrel.2014.06.025

    Article  CAS  PubMed  Google Scholar 

  114. Ferrandiz ML, Maicas N, Garcia-Arnandis I, Terencio MC, Motterlini R, Devesa I, Joosten LA, van den Berg WB, Alcaraz MJ (2008) Treatment with a CO-releasing molecule (CORM-3) reduces joint inflammation and erosion in murine collagen-induced arthritis. Ann Rheum Dis 67:1211–1217. https://doi.org/10.1136/ard.2007.082412

    Article  CAS  PubMed  Google Scholar 

  115. Nobre LS, Seixas JD, Romao CC, Saraiva LM (2007) Antimicrobial action of carbon monoxide-releasing compounds. Antimi Aget Chemother 51:4303–4307. https://doi.org/10.1128/aac.00802-07

    Article  CAS  Google Scholar 

  116. Bikiel DE, Gonzalez SE, Di Salvo F, Milagre HM, Eberlin MN, Correa RS, Ellena J, Estrin DA, Doctorovich F (2011) Tetrachlorocarbonyliridates: water-soluble carbon monoxide releasing molecules rate-modulated by the sixth ligand. Inorg Chem 50:2334–2345. https://doi.org/10.1021/ic102038v

    Article  CAS  PubMed  Google Scholar 

  117. Suliman HB, Zobi F, Piantadosi CA (2016) Heme oxygenase-1/carbon monoxide system and embryonic stem cell differentiation and maturation into cardiomyocytes. Antioxid Red Sig 24:345–360. https://doi.org/10.1089/ars.2015.6342

    Article  CAS  Google Scholar 

  118. Musameh MD, Green CJ, Mann BE, Fuller BJ, Motterlini R (2007) Improved myocardial function after cold storage with preservation solution supplemented with a carbon monoxide-releasing molecule (CORM-3). J Heart Lung Transp 26:1192–1198. https://doi.org/10.1016/j.healun.2007.08.005

    Article  Google Scholar 

  119. Wareham LK, Poole RK, Tinajero-Trejo M (2015) CO-releasing metal carbonyl compounds as antimicrobial agents in the post-antibiotic era. J Biol Chem 290:18999–19007. https://doi.org/10.1074/jbc.R115.642926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Seixas JD, Santos MF, Mukhopadhyay A, Coelho AC, Reis PM, Veiros LF, Marques AR, Penacho N, Goncalves AM, Romao MJ, Bernardes GJ, Santos-Silva T, Romao CC (2015) A contribution to the rational design of Ru(CO)3Cl2L complexes for in vivo delivery of CO. Dalt Trans 44:5058–5075. https://doi.org/10.1039/c4dt02966f

    Article  CAS  Google Scholar 

  121. Pena AC, Penacho N, Mancio-Silva L, Neres R, Seixas JD, Fernandes AC, Romao CC, Mota MM, Bernardes GJ, Pamplona A (2012) A novel carbon monoxide-releasing molecule fully protects mice from severe malaria. Antioxid Red Sig 56:1281–1290. https://doi.org/10.1128/aac.05571-11

    Article  CAS  Google Scholar 

  122. Carrington SJ, Chakraborty I, Bernard JM, Mascharak PK (2014) Synthesis and characterization of a “Turn-On” photoCORM for trackable CO delivery to biological targets. ACS Med Chem Lett 5:1324–1328. https://doi.org/10.1021/ml500399r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Romanski S, Kraus B, Schatzschneider U, Neudorfl JM, Amslinger S, Schmalz HG (2011) Acyloxybutadiene iron tricarbonyl complexes as enzyme-triggered CO-releasing molecules (ET-CORMs). Ang Chem Int Ed Engl 50:2392–2396. https://doi.org/10.1002/anie.201006598

    Article  CAS  Google Scholar 

  124. Faizan M, Muhammad N, Niazi KUK, Hu Y, Wang Y, Wu Y, Sun H, Liu R, Dong W, Zhang W, Gao Z (2019) CO-releasing materials: an emphasis on therapeutic implications, as release and subsequent cytotoxicity are the part of therapy. Materials 12:1643. https://doi.org/10.3390/ma12101643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Diring S, Carné-Sánchez A, Zhang J, Ikemura S, Kim C, Inaba H, Kitagawa S, Furukawa S (2017) Light responsive metal–organic frameworks as controllable CO-releasing cell culture substrates. Chem Sci 8:2381–2386. https://doi.org/10.1039/C6SC04824B

    Article  CAS  PubMed  Google Scholar 

  126. Ma M, Noei H, Mienert B, Niesel J, Bill E, Muhler M, Fischer RA, Wang Y, Schatzschneider U, Metzler-Nolte N (2013) Iron metal-organic frameworks MIL-88B and NH2-MIL-88B for the loading and delivery of the gasotransmitter carbon monoxide. Chemistry 19:6785–6790. https://doi.org/10.1002/chem.201201743

    Article  CAS  PubMed  Google Scholar 

  127. Pierri AE, Huang PJ, Garcia JV, Stanfill JG, Chui M, Wu G, Zheng N, Ford PC (2015) A photoCORM nanocarrier for CO release using NIR light. Chem Comm 51:2072–2075. https://doi.org/10.1039/c4cc06766e

    Article  CAS  PubMed  Google Scholar 

  128. Yin H, Fang J, Liao L, Nakamura H, Maeda H (2014) Styrene-maleic acid copolymer-encapsulated CORM2, a water-soluble carbon monoxide (CO) donor with a constant CO-releasing property, exhibits therapeutic potential for inflammatory bowel disease. J Control Release 187:14–21. https://doi.org/10.1016/j.jconrel.2014.05.018

    Article  CAS  PubMed  Google Scholar 

  129. Tabe H, Fujita K, Abe S, Tsujimoto M, Kuchimaru T, Kizaka-Kondoh S, Takano M, Kitagawa S, Ueno T (2015) Preparation of a cross-linked porous protein crystal containing Ru carbonyl complexes as a CO-releasing extracellular scaffold. Inorg Chem 54:215–220. https://doi.org/10.1021/ic502159x

    Article  CAS  PubMed  Google Scholar 

  130. Kunz PC, Brückmann NE, Spingler B (2007) Towards polymer diagnostic agents—copolymers of N-(2-hydroxypropyl)methacrylamide and bis(2-pyridylmethyl)-4-vinylbenzylamine: synthesis, characterisation and Re(CO)3-labelling. Eur J Inorg Chem 2007:394–399. https://doi.org/10.1002/ejic.200600824

    Article  CAS  Google Scholar 

  131. Brückmann NE, Wahl M, Reiß GJ, Kohns M, Wätjen W, Kunz PC (2011) Polymer conjugates of photoinducible CO-releasing molecules. Eur J Inorg Chem 2011:4571–4577. https://doi.org/10.1002/ejic.201100545

    Article  CAS  Google Scholar 

  132. Matson JB, Webber MJ, Tamboli VK, Weber B, Stupp SI (2012) A peptide-based material for therapeutic carbon monoxide delivery. Soft Matter 8:6689–6692. https://doi.org/10.1039/C2SM25785H

    Article  CAS  Google Scholar 

  133. Dördelmann G, Pfeiffer H, Birkner A, Schatzschneider U (2011) Silicium dioxide nanoparticles as carriers for photoactivatable CO-releasing molecules (PhotoCORMs). Inorg Chem 50:4362–4367. https://doi.org/10.1021/ic1024197

    Article  CAS  PubMed  Google Scholar 

  134. Gonzales MA, Han H, Moyes A, Radinos A, Hobbs AJ, Coombs N, Oliver SRJ, Mascharak PK (2014) Light-triggered carbon monoxide delivery with Al-MCM-41-based nanoparticles bearing a designed manganese carbonyl complex. J Matr Chem B 2:2107–2113. https://doi.org/10.1039/C3TB21309A

    Article  CAS  Google Scholar 

  135. Dordelmann G, Meinhardt T, Sowik T, Krueger A, Schatzschneider U (2012) CuAAC click functionalization of azide-modified nanodiamond with a photoactivatable CO-releasing molecule (PhotoCORM) based on [Mn(CO)3(tpm)]+. Chem Commun 48:11528–11530. https://doi.org/10.1039/c2cc36491c

    Article  CAS  Google Scholar 

  136. Kunz PC, Meyer H, Barthel J, Sollazzo S, Schmidt AM, Janiak C (2013) Metal carbonyls supported on iron oxide nanoparticles to trigger the CO-gasotransmitter release by magnetic heating. Chem Commun 49:4896–4898. https://doi.org/10.1039/c3cc41411f

    Article  CAS  Google Scholar 

  137. Govender P, Pai S, Schatzschneider U, Smith GS (2013) Next generation photoCORMs: polynuclear tricarbonylmanganese(I)-functionalized polypyridyl metallodendrimers. Inorg Chem 52:5470–5478. https://doi.org/10.1021/ic400377k

    Article  CAS  PubMed  Google Scholar 

  138. Lomont JP, Nguyen SC, Harris CB (2014) Exploring the utility of tandem thermal-photochemical CO delivery with CORM-2. Organometallics 33:6179–6185. https://doi.org/10.1021/om500859c

    Article  CAS  Google Scholar 

  139. Bannenberg GL, Vieira HL (2009) Therapeutic applications of the gaseous mediators carbon monoxide and hydrogen sulfide. Expert Opin Ther Patient 19:663–682. https://doi.org/10.1517/13543770902858824

    Article  CAS  Google Scholar 

  140. Seixas JD, Mukhopadhyay A, Santos-Silva T, Otterbein LE, Gallo DJ, Rodrigues SS, Guerreiro BH, Goncalves AM, Penacho N, Marques AR, Coelho AC, Reis PM, Romao MJ, Romao CC (2013) Characterization of a versatile organometallic pro-drug (CORM) for experimental CO based therapeutics. Dalt Trans 42:5985–5998. https://doi.org/10.1039/c2dt32174b

    Article  CAS  Google Scholar 

  141. Hu M, Zhu B, Zhou H, Qiao L, Fan J, Du Y, Chang F, Yu S (2020) Water-soluble UV/visible light activated Mn-CO-releasing molecules: Synthesis, structure, CO releasing and biological activities evaluation. Inorg Chem Commun 119:108093. https://doi.org/10.1016/j.inoche.2020.108093

    Article  CAS  Google Scholar 

  142. Masini E, Vannacci A, Failli P, Mastroianni R, Giannini L, Vinci MC, Uliva C, Motterlini R, Mannaioni PF (2008) A carbon monoxide-releasing molecule (CORM-3) abrogates polymorphonuclear granulocyte-induced activation of endothelial cells and mast cells. Faseb J 22:3380–3388. https://doi.org/10.1096/fj.08-107110

    Article  CAS  PubMed  Google Scholar 

  143. Mohr F, Niesel J, Schatzschneider U, Lehmann CW (2012) Synthesis, structures, and CO releasing properties of two tricarbonyl manganese(I) complexes. Z Anorg Allg Chem 638:543–546. https://doi.org/10.1002/zaac.201100422

    Article  CAS  Google Scholar 

  144. Muhammad Faizan NM (2020) CO-releasing materials: therapeutic implications and challenges towards drug discovery. J Nanotechnol Nanomater 1:1–4. https://doi.org/10.33696/Nanotechnol.1.001

    Article  Google Scholar 

  145. Jackson CS, Schmitt S, Dou QP, Kodanko JJ (2011) Synthesis, characterization, and reactivity of the stable iron carbonyl complex [Fe(CO)(N4Py)](ClO4)2: photoactivated carbon monoxide release, growth inhibitory activity, and peptide ligation. Inorg Chem 50:5336–5338. https://doi.org/10.1021/ic200676s

    Article  CAS  PubMed  Google Scholar 

  146. Foresti R, Hammad J, Clark JE, Johnson TR, Mann BE, Friebe A, Green CJ, Motterlini R (2004) Vasoactive properties of CORM-3, a novel water-soluble carbon monoxide-releasing molecule. Br J Pharmacol 142:453–460. https://doi.org/10.1038/sj.bjp.0705825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mann BE (2012) CO-releasing molecules: a personal view. Organometallics 31:5728–5735. https://doi.org/10.1021/om300364a

    Article  CAS  Google Scholar 

  148. Wegiel B, Hanto DW, Otterbein LE (2013) The social network of carbon monoxide in medicine. Trends Mol Med 19:3–11. https://doi.org/10.1016/j.molmed.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  149. Rochette L, Cottin Y, Zeller M, Vergely C (2013) Carbon monoxide: mechanisms of action and potential clinical implications. Pharmacol Ther 137:133–152. https://doi.org/10.1016/j.pharmthera.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  150. Leon-Paravic CG, Figueroa VA, Guzman DJ, Valderrama CF, Vallejos AA, Fiori MC, Altenberg GA, Reuss L, Retamal MA (2014) Carbon monoxide (CO) is a novel inhibitor of connexin hemichannels. J Biol Chem 289:36150–36157. https://doi.org/10.1074/jbc.M114.602243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bailey JA (2011) An undergraduate laboratory experiment in bioinorganic chemistry: ligation states of myoglobin. J Chem Educ 88:995–998. https://doi.org/10.1021/ed100600c

    Article  CAS  Google Scholar 

  152. Yabluchanskiy A, Sawle P, Homer-Vanniasinkam S, Green CJ, Foresti R, Motterlini R (2012) CORM-3, a carbon monoxide-releasing molecule, alters the inflammatory response and reduces brain damage in a rat model of hemorrhagic stroke. Crit Care Med 40:544–552. https://doi.org/10.1097/CCM.0b013e31822f0d64

    Article  CAS  PubMed  Google Scholar 

  153. Gonzalez MA, Carrington SJ, Chakraborty I, Olmstead MM, Mascharak PK (2013) Photoactivity of mono- and dicarbonyl complexes of ruthenium(II) bearing an N, N, S-donor ligand: role of ancillary ligands on the capacity of CO photorelease. Inorg Chem 52:11320–11331. https://doi.org/10.1021/ic4016004

    Article  CAS  PubMed  Google Scholar 

  154. Inaba H, Fujita K, Ueno T (2015) Design of biomaterials for intracellular delivery of carbon monoxide. Biomater Sci 3:1423–1438. https://doi.org/10.1039/c5bm00210a

    Article  CAS  PubMed  Google Scholar 

  155. Santos-Silva T, Mukhopadhyay A, Seixas JD, Bernardes GJ, Romao CC, Romao MJ (2011) CORM-3 reactivity toward proteins: the crystal structure of a Ru(II) dicarbonyl-lysozyme complex. J Am Chem Soc 133:1192–1195. https://doi.org/10.1021/ja108820s

    Article  CAS  PubMed  Google Scholar 

  156. Hewison L, Crook SH, Mann BE, Meijer AJHM, Adams H, Sawle P, Motterlini RA (2012) New types of CO-releasing molecules (CO-RMs), based on iron dithiocarbamate complexes and [Fe(CO)3I(S2COEt)]. Organometallics 31:5823–5834. https://doi.org/10.1021/om3003637

    Article  CAS  Google Scholar 

  157. Gonzalez MA, Carrington SJ, Fry NL, Martinez JL, Mascharak PK (2012) Syntheses, structures, and properties of new manganese carbonyls as photoactive CO-releasing molecules: design strategies that lead to CO photolability in the visible region. Inorg Chem 51:11930–11940. https://doi.org/10.1021/ic3018216

    Article  CAS  PubMed  Google Scholar 

  158. Atkin AJ, Fairlamb IJS, Ward JS, Lynam JM (2012) CO release from norbornadiene iron(0) tricarbonyl complexes: importance of ligand dissociation. Organometallics 31:5894–5902. https://doi.org/10.1021/om300419w

    Article  CAS  Google Scholar 

  159. Atkin AJ, Williams S, Sawle P, Motterlini R, Lynam JM, Fairlamb IJ (2009) Mu2-alkyne dicobalt(0)hexacarbonyl complexes as carbon monoxide-releasing molecules (CO-RMs): probing the release mechanism. Dalt Trans 20:3653–3656. https://doi.org/10.1039/b904627p

    Article  CAS  Google Scholar 

  160. Fairlamb IJ, Duhme-Klair AK, Lynam JM, Moulton BE, O’Brien CT, Sawle P, Hammad J, Motterlini R (2006) Eta4-pyrone iron(0)carbonyl complexes as effective CO-releasing molecules (CO-RMs). Bioorg Med Chem Lett 16:995–998. https://doi.org/10.1016/j.bmcl.2005.10.085

    Article  CAS  PubMed  Google Scholar 

  161. Gunaseelan S, Debrah O, Wan L, Leibowitz MJ, Rabson AB, Stein S, Sinko PJ (2004) Synthesis of poly(ethylene glycol)-based saquinavir prodrug conjugates and assessment of release and anti-HIV-1 bioactivity using a novel protease inhibition assay. Bioconjug Chem 15:1322–1333. https://doi.org/10.1021/bc0498875

    Article  CAS  PubMed  Google Scholar 

  162. Mann BE (2010) Carbon monoxide: an essential signalling molecule. In: Jaouen G, Metzler-Nolte N (eds) Medical organomaterics. Springer, Chem., pp 247–285. https://doi.org/10.1007/978-3-642-13185-1_10

    Chapter  Google Scholar 

  163. Sawle P, Foresti R, Mann BE, Johnson TR, Green CJ, Motterlini R (2005) Carbon monoxide-releasing molecules (CO-RMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages. Br J Pharmacol 145:800–810. https://doi.org/10.1038/sj.bjp.0706241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Seixas JD, Chaves-Ferreira M, Montes-Grajales D, Gonçalves AM, Marques AR, Saraiva LM, Olivero-Verbel J, Romão CC, Bernardes GJL (2015) An N-acetyl cysteine ruthenium tricarbonyl conjugate enables simultaneous release of CO and ablation of reactive oxygen species. Chemistry 21:14708–14712. https://doi.org/10.1002/chem.201502474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ward JS, Lynam JM, Moir J, Fairlamb IJ (2014) Visible-light-induced CO release from a therapeutically viable tryptophan-derived manganese(I) carbonyl (TryptoCORM) exhibiting potent inhibition against E. coli. Chemistry 20:15061–15068. https://doi.org/10.1002/chem.201403305

    Article  CAS  PubMed  Google Scholar 

  166. Mede R, Klein M, Claus RA, Krieck S, Quickert S, Gorls H, Neugebauer U, Schmitt M, Gessner G, Heinemann SH, Popp J, Bauer M, Westerhausen M (2016) CORM-EDE1: a highly water-soluble and nontoxic manganese-based photoCORM with a biogenic ligand sphere. Inorg Chem 55:104–113. https://doi.org/10.1021/acs.inorgchem.5b01904

    Article  CAS  PubMed  Google Scholar 

  167. Crook SH, Mann BE, Meijer AJ, Adams H, Sawle P, Scapens D, Motterlini R (2011) [Mn(CO)4{S2CNMe(CH2CO2H)}], a new water-soluble CO-releasing molecule. Dalt Trans 40:4230–4235. https://doi.org/10.1039/c1dt10125k

    Article  CAS  Google Scholar 

  168. Bu-Abbas A, Ionnides C, Walker R (1994) Evaluation of the antimutagenic potential of anthracene: in vitro and ex vivo studies. Mutat Res 309:101–107. https://doi.org/10.1016/0027-5107(94)90047-7

    Article  CAS  PubMed  Google Scholar 

  169. Romanski S, Rücker H, Stamellou E, Guttentag M, Neudörfl J-M, Alberto R, Amslinger S, Yard B, Schmalz H-G (2012) Iron dienylphosphate tricarbonyl complexes as water-soluble enzyme-triggered CO-releasing molecules (ET-CORMs). Organometallics 31:5800–5809. https://doi.org/10.1021/om300359a

    Article  CAS  Google Scholar 

  170. Poh HT, Sim BT, Chwee TS, Leong WK, Fan WY (2014) The dithiolate-bridged diiron hexacarbonyl complex Na2[(μ-SCH2CH2COO)Fe(CO)3]2 as a water-soluble photoCORM. Organometallics 33:959–963. https://doi.org/10.1021/om401013a

    Article  CAS  Google Scholar 

  171. Ward JS, Lynam JM, Moir JW, Sanin DE, Mountford AP, Fairlamb IJ (2012) A therapeutically viable photo-activated manganese-based CO-releasing molecule (photo-CO-RM). Dalt Trans 41:10514–10517. https://doi.org/10.1039/c2dt31588b

    Article  CAS  Google Scholar 

  172. Marques AR, Kromer L, Gallo DJ, Penacho N, Rodrigues SS, Seixas JD, Bernardes GJL, Reis PM, Otterbein SL, Ruggieri RA, Gonçalves ASG, Gonçalves AML, Matos MND, Bento I, Otterbein LE, Blättler WA, Romão CC (2012) Generation of carbon monoxide releasing molecules (CO-RMs) as drug candidates for the treatment of acute liver injury: targeting of CO-RMs to the liver. Organometallics 31:5810–5822. https://doi.org/10.1021/om300360c

    Article  CAS  Google Scholar 

  173. Zobi F, Blacque O, Jacobs RA, Schaub MC, Bogdanova AY (2012) 17 e−rhenium dicarbonyl CO-releasing molecules on a cobalamin scaffold for biological application. Dalt Trans 41:370–378. https://doi.org/10.1039/C1DT10649J

    Article  CAS  Google Scholar 

  174. Zobi F, Quaroni L, Santoro G, Zlateva T, Blacque O, Sarafimov B, Schaub MC, Bogdanova AY (2013) Live-fibroblast IR imaging of a cytoprotective PhotoCORM activated with visible light. J Med Chem 56:6719–6731. https://doi.org/10.1021/jm400527k

    Article  CAS  PubMed  Google Scholar 

  175. Zhou Lingling ZY, Yanli T, Kewu Y, Lei Z, Lingxiang G, Guofang Z, Ziwei G, Weiqiang Z (2016) Antibacterial Fischer carbenoid CO-releasing molecules. Chin J Org Chem 36:2695–2703. https://doi.org/10.6023/cjoc201603027

    Article  CAS  Google Scholar 

  176. Jimenez J, Chakraborty I, Carrington SJ, Mascharak PK (2016) Light-triggered CO delivery by a water-soluble and biocompatible manganese photoCORM. Dalt Trans 45:13204–13213. https://doi.org/10.1039/c6dt01358a

    Article  CAS  Google Scholar 

  177. Carmona FJ, Rojas S, Sanchez P, Jeremias H, Marques AR, Romao CC, Choquesillo-Lazarte D, Navarro JA, Maldonado CR, Barea E (2016) Cation exchange strategy for the encapsulation of a photoactive CO-releasing organometallic molecule into anionic porous frameworks. Inorg Chem 55:6525–6531. https://doi.org/10.1021/acs.inorgchem.6b00674

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the assistance from Professor Ruixia Liu of Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.

Funding

This work was supported by the grant from the National Natural Science Foundation of China (21371112 and 21446014), the 111 Project (B14041), the Fundamental Funds Research for the Central Universities (nos. GK201501005, GK201503029, and 2016CSY002), the Grant from the Fundamental Doctoral Fund of Ministry of Education of China (20120202120005), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT_14R33).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Faizan, Niaz Muhammad or Weiqiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H., Faizan, M., Niazi, S.U.K. et al. Water-Soluble Carbon Monoxide-Releasing Molecules (CORMs). Top Curr Chem (Z) 381, 3 (2023). https://doi.org/10.1007/s41061-022-00413-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00413-6

Keywords

Navigation