Skip to main content
Log in

Designs and Applications of Multi-stimuli Responsive FRET Processes in AIEgen-Functionalized and Bi-fluorophoric Supramolecular Materials

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Materials capable of displaying strong ratiometric fluorescence with Förster resonance energy transfer (FRET) processes have attracted much research interest because of various chemosensor and biomedical applications. This review highlights several popular strategies in designing FRET-OFF/ON mechanisms of ratiometric fluorescence systems. In particular, the developments of organic and polymeric FRET materials featuring aggregation-induced emission-based luminogens (AIEgens), supramolecular assemblies, photochromic molecular switches and surfactant-induced AIE/FRET mechanisms are presented. AIEgens have been frequently employed as FRET donor and/or acceptor fluorophores to obtain enhanced ratiometric fluorescences in solution and solid states. Since AIE effects and FRET processes rely on controllable distances between fluorophores, many interesting fluorescent properties can be designed by regulating aggregation states in polymers and supramolecular systems. Photo-switchable fluorophores, such as spiropyran and diarylethene, provide drastic changes in fluorescence spectra upon photo-induced isomerizations, leading to photo-switching mechanisms to activate/deactivate FRET processes. Supramolecular assemblies offer versatile platforms to regulate responsive FRET processes effectively. In rotaxane structures, the donor-acceptor distance and FRET efficiency can be tuned by acid/base-controlled shuttling of the macrocycle component. The tunable supramolecular interactions are strongly influenced by external factors (such as pH values, temperatures, analytes, surfactants, UV-visible lights, etc.), which induce the assembly and disassembly of host-guest systems and thus their FRET-ON/FRET-OFF behavior. In addition, the changes in donor or acceptor fluorescence profiles upon detections of analytes can also sufficiently alter the FRET behavior and result in different ratiometric fluorescence outputs. The strategies and examples provided in this review offer the insights and toolkits for future FRET-based material developments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD (2018) Fluorescent chemosensors: the past, present and future. Chem Soc Rev 46:7105–7123. https://doi.org/10.1039/C7CS00240H

    Article  Google Scholar 

  2. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110:2620–2640. https://doi.org/10.1021/cr900263j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sun X, Wang Y, Lei Y (2015) Fluorescence based explosive detection: from mechanisms to sensory materials. Chem Soc Rev 44:8019–8061. https://doi.org/10.1039/C5CS00496A

    Article  CAS  PubMed  Google Scholar 

  4. Srikun D, Miller EW, Domaille DW, Chang CJ (2008) An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells. J Am Chem Soc 130:4596–4597. https://doi.org/10.1021/ja711480f

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, Chen Q, Pan X, Lu W, Zhang J (2022) Development and challenge of fluorescent probes for bioimaging applications: from visualization to diagnosis. Top Curr Chem 380:22. https://doi.org/10.1007/s41061-022-00376-8

    Article  CAS  Google Scholar 

  6. Kikuchi K, Takakusa H, Nagano T (2004) Recent advances in the design of small molecule-based FRET sensors for cell biology. Trend Anal Chem 23:407–415. https://doi.org/10.1016/S0165-9936(04)00608-9

    Article  CAS  Google Scholar 

  7. Ueno T, Nagano T (2011) Fluorescent probes for sensing and imaging. Nat Methods 8:642–645. https://doi.org/10.1038/nmeth.1663

    Article  CAS  PubMed  Google Scholar 

  8. Algar WR, Hildebrandt N, Vogel SS, Medintz IL (2019) FRET as a biomolecular research tool—understanding its potential while avoiding pitfalls. Nat Methods 16:815–829. https://doi.org/10.1038/s41592-019-0530-8

    Article  CAS  PubMed  Google Scholar 

  9. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  10. Yuan L, Lin W, Zheng K, Zhu S (2013) FRET-based small-molecule fluorescent probes: rational design and bioimaging applications. Acc Chem Res 46:1462–1473. https://doi.org/10.1021/ar300273v

    Article  CAS  PubMed  Google Scholar 

  11. Teunissen AJP, Medina CP, Meijerink A, Mulder WJM (2018) Investigating supramolecular systems using Förster resonance energy transfer. Chem Soc Rev 47:7027–7044. https://doi.org/10.1039/C8CS00278A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angew Chem Int Ed 45:4562–4589. https://doi.org/10.1002/anie.200503873

    Article  CAS  Google Scholar 

  13. Lin W, Yuan L, Long L, Guo C, Feng J (2008) A fluorescent cobalt probe with a large ratiometric fluorescence response via modulation of energy acceptor molar absorptivity on metal ion binding. Adv Funct Mater 18:2366–2372. https://doi.org/10.1002/adfm.200800285

    Article  CAS  Google Scholar 

  14. Zhang X, Xiao Y, Qian X (2008) A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angew Chem Int Ed 47:8025–8029. https://doi.org/10.1002/ange.200803246

    Article  CAS  Google Scholar 

  15. Albers AE, Okreglak VS, Chang CJ (2006) A FRET-based approach to ratiometric fluorescence detection of hydrogen peroxide. J Am Chem Soc 128:9640–9641. https://doi.org/10.1021/ja063308k

    Article  CAS  PubMed  Google Scholar 

  16. Yuan L, Lin W, Xie Y, Chen B, Zhu S (2012) Single fluorescent probe responds to H2O2, NO, and H2O2/NO with three different sets of fluorescence signals. J Am Chem Soc 134:1305–1315. https://doi.org/10.1021/ja2100577

    Article  CAS  PubMed  Google Scholar 

  17. Chen W, Pacheco A, Takano Y, Day JJ, Hanaoka K, Xian M (2016) A single fluorescent probe to visualize hydrogen sulfide and hydrogen polysulfides with different fluorescence signals. Angew Chem Int Ed 55:9993–9996. https://doi.org/10.1002/ange.201604892

    Article  CAS  Google Scholar 

  18. Ma Y, Chen Q, Pan X, Zhang J (2021) Insight into fluorescence imaging and bioorthogonal reactions in biological analysis. Top Curr Chem 379:10. https://doi.org/10.1007/s41061-020-00323-5

    Article  CAS  Google Scholar 

  19. Marx V (2017) Probes: FRET sensor design and optimization. Nat Methods 14:949–953. https://doi.org/10.1038/nmeth.4434

    Article  CAS  PubMed  Google Scholar 

  20. Miao S, Liang K, Kong B (2020) Förster resonance energy transfer (FRET) paired carbon dot-based complex nanoprobes: versatile platforms for sensing and imaging applications. Mater Chem Front 4:128–139. https://doi.org/10.1039/C9QM00538B

    Article  CAS  Google Scholar 

  21. Long Y, Stahl Y, Weidtkamp-Peters S, Postma M, Zhou W, Goedhart J, Sánchez-Pérez M-I, Gadella TWJ, Simon R, Scheres B, Blilou I (2017) In vivo FREt-FLIM reveals cell-type-specific protein interactions in Arabidopsis roots. Nature 548:97–102. https://doi.org/10.1038/nature23317

    Article  CAS  PubMed  Google Scholar 

  22. Ast C, Foret J, Oltrogge LM (2017) Ratiometric matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins. Nat Commun 8:431. https://doi.org/10.1038/s41467-017-00400-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ermert S, Marx A, Hacker S (2017) Phosphate-modified nucleotides for monitoring enzyme activity. Top Curr Chem 375:28. https://doi.org/10.1007/s41061-017-0117-8

    Article  CAS  Google Scholar 

  24. Wu L, Huang C, Emery BP, Sedgwick AC, Bull SD, He XP, He T, Yoon J, Sessler JL, James TD (2020) Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem Soc Rev 49:5110–5139. https://doi.org/10.1039/C9CS00318E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Xia B, Huang Q, Luo T, Zhang Y, Timashev P, Guo W, Li F, Liang X-J (2021) Practicable applications of aggregation-induced emission with biomedical perspective. Adv Healthc Mater 10:2100945. https://doi.org/10.1002/adhm.202100945

    Article  CAS  Google Scholar 

  26. Jenekhe SA, Osaheni JA (1994) Excimers and exciplexes of conjugated polymers. Science 265:765–768. https://doi.org/10.1126/science.265.5173.765

    Article  CAS  PubMed  Google Scholar 

  27. Luo JD, Xie ZL, Lam JWY, Cheng L, Chen HY, Qiu CF, Kwok HS, Zhan XW, Liu YQ, Zhu DB, Tang BZ (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun. https://doi.org/10.1039/B105159H

    Article  Google Scholar 

  28. Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388. https://doi.org/10.1039/C1CS15113D

    Article  CAS  PubMed  Google Scholar 

  29. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev 115:11718–11940. https://doi.org/10.1021/acs.chemrev.5b00263

    Article  CAS  PubMed  Google Scholar 

  30. Zeng Q, Li Z, Dong YQ, Di CA, Qin AJ, Hong YN, Ji L, Zhu ZC, Jim CKW, Yu G, Li QQ, Li ZG, Liu YQ, Qin JG, Tang BZ (2007) Fluorescence enhancements of benzene-cored luminophors by restricted intramolecular rotations: AIE and AIEE effects. Chem Commun. https://doi.org/10.1039/B613522F

    Article  Google Scholar 

  31. Peng Q, Shuai Z (2021) Molecular mechanism of aggregation-induced emission. Aggregate 2:e91. https://doi.org/10.1002/agt2.91

    Article  Google Scholar 

  32. Rodrigues ACB, Seixas S, de Melo J (2021) Aggregation-induced emission: from small molecules to polymers-historical background, mechanisms and photophysics. Top Curr Chem 379:15. https://doi.org/10.1007/s41061-021-00327-9

    Article  CAS  Google Scholar 

  33. Alam P, Leung NLC, Cheng Y, Zhang H, Liu J, Wu W, Kwok RTK, Lam JWY, Sung HHY, Williams ID, Tang BZ (2019) Spontaneous and fast molecular motion at room temperature in the solid state. Angew Chem Int Ed 58:4536–4540. https://doi.org/10.1002/anie.201813554

    Article  CAS  Google Scholar 

  34. Yang J, Manman F, Zhen L (2020) Organic luminescent materials: The concentration on aggregates from aggregation-induced emission. Aggregate 1:6–18. https://doi.org/10.1002/agt2.2

    Article  Google Scholar 

  35. Naghibi S, Chen T, Jamshidi Ghahfarokhi A, Tang Y (2021) AIEgen-enhanced protein imaging: Probe design and sensing mechanisms. Aggregate 2:e41. https://doi.org/10.1002/agt2.41

    Article  Google Scholar 

  36. Hu JJ, Jiang W, Yuan L, Duan C, Yuan Q, Long Z, Lou X, Xia F (2021) Recent advances in stimuli-responsive theranostic systems with aggregation-induced emission characteristics. Aggregate 2:48–65. https://doi.org/10.1002/agt2.10

    Article  Google Scholar 

  37. Zhao E, Chen Y, Chen S, Deng H, Gui C, Leung CW, Hong Y, Lam JWY, Tang BZ (2015) A luminogen with aggregation-induced emission characteristics for wash-free bacterial imaging, high-throughput antibiotics screening and bacterial susceptibility evaluation. Adv Mater 27:4931–4937. https://doi.org/10.1002/adma.201501972

    Article  CAS  PubMed  Google Scholar 

  38. Liu R, Xu Y, Xu K, Dai Z (2021) Current trends and key considerations in the clinical translation of targeted fluorescent probes for intraoperative navigation. Aggregate 2:e23. https://doi.org/10.1002/agt2.23

    Article  Google Scholar 

  39. Yu X, Zhang H, Yu J (2021) Luminescence anti-counterfeiting: From elementary to advanced. Aggregate 2:20–34. https://doi.org/10.1002/agt2.15

    Article  Google Scholar 

  40. Cao S, Shao J, Abdelmohsen LKEA, van Hest JCM (2021) Amphiphilic AIEgen-polymer aggregates: design, self-assembly and biomedical applications. Aggregate 3:e128. https://doi.org/10.1002/agt2.128

    Article  Google Scholar 

  41. Dong L, Peng HQ, Niu LY, Yang QZ (2021) Modulation of aggregation-induced emission by excitation energy transfer: design and application. Top Curr Chem 379:18. https://doi.org/10.1007/s41061-021-00330-0

    Article  CAS  Google Scholar 

  42. Zhang B, Banal JL, Jones DJ, Tang BZ, Ghiggino KP, Wong WWH (2018) Aggregation-induced emission-mediated spectral downconversion in luminescent solar concentrators. Mater Chem Front 2:615–619. https://doi.org/10.1039/C7QM00598A

    Article  CAS  Google Scholar 

  43. Wang D, Tang BZ (2019) Aggregation-induced emission luminogens for activity-based sensing. Acc Chem Res 52:2559–2570. https://doi.org/10.1021/acs.accounts.9b00305

    Article  CAS  PubMed  Google Scholar 

  44. Xia F, Wu J, Wu X, Hu Q, Dai J, Lou X (2019) Modular design of peptide- or DNA-modified AIEgen probes for biosensing applications. Acc Chem Res 52:3064–3074. https://doi.org/10.1021/acs.accounts.9b00348

    Article  CAS  PubMed  Google Scholar 

  45. Liu Z, Dai X, Sun Y, Liu Y (2020) Organic supramolecular aggregates based on water-soluble cyclodextrins and calixarenes. Aggregate 1:31–44. https://doi.org/10.1002/agt2.3

    Article  Google Scholar 

  46. Chua MH, Zhou H, Zhu Q, Tang BZ, Xu JW (2021) Recent advances in cation sensing using aggregation-induced emission. Mater Chem Front 5:659–708. https://doi.org/10.1039/D0QM00607F

    Article  CAS  Google Scholar 

  47. Han T, Wang X, Wang D, Tang BZ (2021) Functional polymer systems with aggregation-induced emission and stimuli responses. Top Curr Chem 379:7. https://doi.org/10.1007/978-3-030-89933-2_9

    Article  CAS  Google Scholar 

  48. Xiao T, Bao C, Zhang L, Diao K, Ren D, Wei C, Li Z-Y, Sun X-Q (2022) An artificial light-harvesting system based on the ESIPt-AIE–FRET triple fluorescence mechanism. J Mater Chem A 10:8528–8534. https://doi.org/10.1039/D2TA00277A

    Article  CAS  Google Scholar 

  49. Ji C, Lai L, Li P, Wu Z, Cheng W, Yin M (2021) Organic dye assemblies with aggregation-induced photophysical changes and their bio-applications. Aggregate 2:e39. https://doi.org/10.1002/agt2.39

    Article  Google Scholar 

  50. Kortekaas L, Browne WR (2019) The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem Soc Rev 48:3406–3424. https://doi.org/10.1039/C9CS00203K

    Article  CAS  PubMed  Google Scholar 

  51. Yang Y, Hughes RP, Aprahamian I (2012) Visible light switching of a BF2-coordinated azo compound. J Am Chem Soc 134:15221–15224. https://doi.org/10.1021/ja306030d

    Article  CAS  PubMed  Google Scholar 

  52. Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev 114:12174. https://doi.org/10.1021/cr500249p

    Article  CAS  PubMed  Google Scholar 

  53. Klajn R (2014) Spiropyran-based dynamic materials. Chem Soc Rev 43:148–184. https://doi.org/10.1039/C3CS60181A

    Article  CAS  PubMed  Google Scholar 

  54. Berkovic G, Krongauz V, Weiss V (2000) Spiropyrans and spirooxazines for memories and switches. Chem Rev 100:1741–1754. https://doi.org/10.1021/cr9800715

    Article  CAS  PubMed  Google Scholar 

  55. Kundu PK, Samanta D, Leizrowice R, Margulis B, Zhao H, Borner M, Udayabhaskararao T, Manna D, Klajn R (2015) Light-controlled self-assembly of non-photoresponsive nanoparticles. Nat Chem 7:646–652. https://doi.org/10.1038/nchem.2303

    Article  CAS  PubMed  Google Scholar 

  56. Xie X, Crespo GA, Mistlberger G, Bakker E (2014) Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nat Chem 6:202–207. https://doi.org/10.1038/nchem.1858

    Article  CAS  PubMed  Google Scholar 

  57. Raisch M, Genovese D, Zaccheroni N, Schmidt SB, Focarete ML, Sommer M, Gualandi C (2018) Highly sensitive, anisotropic, and reversible stress/strain-sensors from mechanochromic nanofiber composites. Adv Mater. https://doi.org/10.1002/adma.201802813

    Article  PubMed  Google Scholar 

  58. Kortekaas L, Ivashenko O, van Herpt JT, Browne WR (2016) A remarkable multitasking double spiropyran: bidirectional visible-light switching of polymer-coated surfaces with dual redox and proton gating. J Am Chem Soc 138:1301–1312. https://doi.org/10.1021/jacs.5b11604

    Article  CAS  PubMed  Google Scholar 

  59. Howlader P, Mondal B, Purba PC, Zangrando E, Mukherjee PS (2018) Self-assembled Pd(II) barrels as containers for transient merocyanine form and reverse thermochromism of spiropyran. J Am Chem Soc 140:7952–7960. https://doi.org/10.1021/jacs.8b03946

    Article  CAS  PubMed  Google Scholar 

  60. Samanta D, Galaktionova D, Gemen J, Shimon LJW, Diskin-Posner Y, Avram L, Kral P, Klajn R (2018) Reversible chromism of spiropyran in the cavity of a flexible coordination cage. Nat Commun 9:641. https://doi.org/10.1038/s41467-017-02715-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gerkman MA, Yuan S, Duan P, Taufan J, Schmidt-Rohr K, Han GGD (2019) Phase transition of spiropyrans: impact of isomerization dynamics at high temperatures. Chem Commun 55:5813–5816. https://doi.org/10.1039/C9CC02141H

    Article  CAS  Google Scholar 

  62. Fu Y, Han H-H, Zhang J, He X-P, Feringa BL, Tian H (2018) Photocontrolled fluorescence “double-check” bioimaging enabled by a glycoprobe–protein hybrid. J Am Chem Soc 140:8671–8674. https://doi.org/10.1021/jacs.8b05425

    Article  CAS  PubMed  Google Scholar 

  63. Ji J, Li X, Wu T, Feng F (2018) Spiropyran in nanoassemblies as a photosensitizer for photoswitchable ROS generation in living cells. Chem Sci 9:5816–5821. https://doi.org/10.1039/C8SC01148F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qi Q, Qian J, Ma S, Xu B, Zhang SX, Tian W (2015) Reversible multistimuli-response fluorescent switch based on tetraphenylethene–spiropyran molecules. Chem Eur J 21:1149–1155. https://doi.org/10.1002/chem.201405426

    Article  CAS  PubMed  Google Scholar 

  65. Mako TL, Racicot JM, Levine M (2019) Supramolecular luminescent sensors. Chem Rev 119:322–477. https://doi.org/10.1021/acs.chemrev.8b00260

    Article  CAS  PubMed  Google Scholar 

  66. Kaur N, Kaur G, Fegade UA, Singh A, Sahoo SK, Kuwar AS, Singh N (2017) Anion sensing with chemosensors having multiple single bondNH recognition units. TrAC Trends Anal Chem 95:86–109. https://doi.org/10.1016/j.trac.2017.08.003

    Article  CAS  Google Scholar 

  67. Fu HG, Chen Y, Liu Y (2019) Multistimuli-responsive and photocontrolled supramolecular luminescent gels constructed by anthracene-bridged bis (dibenzo-24-crown-8) with secondary ammonium salt polymer. ACS Appl Mater Interfaces 11:16117–16122. https://doi.org/10.1021/acsami.9b04323

    Article  CAS  PubMed  Google Scholar 

  68. Inthasot A, Tung ST, Chiu SH (2018) Using alkali metal ions to template the synthesis of interlocked molecules. Acc Chem Res 51:1324–1337. https://doi.org/10.1021/acs.accounts.8b00071

    Article  CAS  PubMed  Google Scholar 

  69. Lim JYC, Marques I, Felix V, Beer PD (2018) Using alkali metal ions to template the synthesis of interlocked molecules. Angew Chem Int Ed 57:584–588. https://doi.org/10.1021/acs.accounts.8b00071

    Article  CAS  Google Scholar 

  70. Barendt TA, Ferreira L, Marques I, Félix V, Beer PD (2017) Anion-and solvent-induced rotary dynamics and sensing in a perylene diimide [3] catenane. J Am Chem Soc 139:9026–9037. https://doi.org/10.1021/jacs.7b04295

    Article  CAS  PubMed  Google Scholar 

  71. Zhu H, Shangguan L, Shi B, Yu G, Huang F (2018) Recent progress in macrocyclic amphiphiles and macrocyclic host-based supra-amphiphiles. Mater Chem Front 2:2152–2174. https://doi.org/10.1039/C8QM00314A

    Article  CAS  Google Scholar 

  72. Caballero A, Zapata F, White NG, Costa PJ, Feĺix V, Beer PD (2012) A halogen-bonding catenane for anion recognition and sensing. Angew Chem Int Ed 51:1876–1880. https://doi.org/10.1002/ange.201108404

    Article  CAS  Google Scholar 

  73. Langton MJ, Beer PD (2014) Rotaxane and catenane host structures for sensing charged guest species. Acc Chem Res 47:1935–1949. https://doi.org/10.1021/ar500012a

    Article  CAS  PubMed  Google Scholar 

  74. Collins CG, Peck EM, Kramer PJ, Smith BD (2013) Squaraine rotaxane shuttle as a ratiometric deep-red optical chloride sensor. Chem Sci 4:2557–2563. https://doi.org/10.1039/C3SC50535A

    Article  CAS  Google Scholar 

  75. Mullaney BR, Thompson AL, Beer PD (2014) An all-halogen bonding rotaxane for selective sensing of halides in aqueous media. Angew Chem Int Ed 53:11458–11462. https://doi.org/10.1002/anie.201403659

    Article  CAS  Google Scholar 

  76. Vukotic VN, O’Keefe CA, Zhu K, Harris KJ, To C, Schurko RW, Loeb SJ (2015) Mechanically interlocked linkers inside metal–organic frameworks: effect of ring size on rotational dynamics. J Am Chem Soc 137:9643–9651. https://doi.org/10.1021/jacs.5b04674

    Article  CAS  PubMed  Google Scholar 

  77. Goujon A, Lang T, Mariani G, Moulin E, Fuks G, Raya J, Buhler E, Giuseppone N (2017) Bistable [c2] daisy chain rotaxanes as reversible muscle-like actuators in mechanically active gels. J Am Chem Soc 139:14825–14828. https://doi.org/10.1021/jacs.7b06710

    Article  CAS  PubMed  Google Scholar 

  78. Denis M, Qin L, Turner P, Jolliffe KA, Goldup SM (2018) A fluorescent ditopic rotaxane ion-pair host. Angew Chem Int Ed 57:5315–5319. https://doi.org/10.1002/anie.201713105

    Article  CAS  Google Scholar 

  79. Knighton RC, Dapin S, Beer PD (2020) Luminescent anion sensing by transition-metal dipyridylbenzene complexes incorporated into acyclic, macrocyclic and interlocked hosts. Chem Eur J 26:5288–5296. https://doi.org/10.1002/chem.202000661

    Article  CAS  PubMed  Google Scholar 

  80. Hein R, Docker A, Davis JJ, Beer PD (2022) Redox-switchable chalcogen bonding for anion recognition and sensing. J Am Chem Soc 144:8827–8836. https://doi.org/10.1021/jacs.2c02924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lou X-Y, Yang Y-W (2020) Aggregation-induced emission systems involving supramolecular assembly. Aggregate 1:19–30. https://doi.org/10.1002/agt2.1

    Article  Google Scholar 

  82. Wang X, Wang C, Qu K, Song Y, Ren J, Miyoshi D, Sugimoto N, Qu X (2010) Ultrasensitive and selective detection of a prognostic indicator in early-stage cancer using graphene oxide and carbon nanotubes. Adv Funct Mater 20:3967–3971. https://doi.org/10.1002/adfm.201001118

    Article  CAS  Google Scholar 

  83. Zhang Q, Dong S, Zhang M, Huang F (2021) Supramolecular control over thermo-responsive systems with lower critical solution temperature behavior. Aggregate 2:35–47. https://doi.org/10.1002/agt2.12

    Article  Google Scholar 

  84. Liu Y, Guan X, Fang Q (2021) Recent advances in AIEgen-based crystalline porous materials for chemical sensing. Aggregate 2:e34. https://doi.org/10.1002/agt2.34

    Article  Google Scholar 

  85. Yang M, Li X, Yoon J (2021) Activatable supramolecular photosensitizers: advanced design strategies. Mater Chem Front 5:1683–1693. https://doi.org/10.1039/D0QM00827C

    Article  CAS  Google Scholar 

  86. Han J-X, Dai X-Y, Wang H-J, Zhang H-Y, Liu Y (2022) Dual-stimulus supramolecular luminescent switch based on cyanostilbene-bridged bis(dibenzo-24-crown-8) and a diarylethene derivative. Adv Opt Mater. https://doi.org/10.1002/adom.202102390

    Article  Google Scholar 

  87. Laishram R, Maitra U (2022) Energy transfer in FRET pairs in a supramolecular hydrogel template. Chem Commun 58:3162–3165. https://doi.org/10.1039/D1CC07048G

    Article  CAS  Google Scholar 

  88. Zhang Q, Wang X, Cong Y, Kang Y, Wu Z, Li L (2022) Conjugated polymer-functionalized stretchable supramolecular hydrogels to monitor and control cellular behavior. ACS Appl Mater Interfaces 14:12674–12683. https://doi.org/10.1021/acsami.2c00460

    Article  CAS  PubMed  Google Scholar 

  89. Diao K, Whitaker DJ, Huang Z, Qian H, Ren D, Zhang L, Li Z-Y, Sun X-Q, Wang XT, L, (2022) Ultralow-acceptor-content supramolecular light-harvesting system for white-light emission. Chem Commun 58:2343–2346. https://doi.org/10.1039/D1CC06647A

    Article  CAS  Google Scholar 

  90. Attar HAA, Monkman AP (2008) Effect of surfactant on FRET and quenching in DNA sequence detection using conjugated polymers. Adv Funct Mater 18:2498–2509. https://doi.org/10.1002/adfm.200700809

    Article  CAS  Google Scholar 

  91. Lone MS, Bhat PA, Afzal S, Chat OA, Dar AA (2021) Energy transduction through FRET in self-assembled soft nanostructures based on surfactants/polymers: current scenario and prospects. Soft Matter 17:425–446. https://doi.org/10.1039/D0SM01625J

    Article  CAS  PubMed  Google Scholar 

  92. Malik AH, Hussain S, Iyer PK (2016) Aggregation-induced FRET via polymer–surfactant complexation: A new strategy for the detection of spermine. Anal Chem 88:7358–7364. https://doi.org/10.1021/acs.analchem.6b01788

    Article  CAS  PubMed  Google Scholar 

  93. Li L, Liu J, Yang X, Peng Z, Liu W, Xu J, Tang J, He X, Wang K (2015) Quantum dot/methylene blue FRET mediated NIR fluorescent nanomicelles with large Stokes shift for bioimaging. Chem Commun 51:14357–14360. https://doi.org/10.1039/C5CC06258F

    Article  CAS  Google Scholar 

  94. Xiao T, Wu H, Sun S, Diao K, Wei X, Li ZY, Sun XQ, Wang L (2020) An efficient artificial light-harvesting system with tunable emission in water constructed from a H-bonded AIE supramolecular polymer and Nile red. Chem Commun 56:12021–12024. https://doi.org/10.1039/D0CC05077F

    Article  CAS  Google Scholar 

  95. Xiao T, Zhang L, Wu H, Qian H, Ren D, Li ZY, Sun XQ (2021) Supramolecular polymer-directed light-harvesting system based on a stepwise energy transfer cascade. Chem Commun 57:5782–5785. https://doi.org/10.1039/D1CC01788H

    Article  CAS  Google Scholar 

  96. Jia X, Chen Q, Yang Y, Tang Y, Wang R, Xu Y, Zhu W, Qian X (2016) FRET-based mito-specific fluorescent probe for ratiometric detection and imaging of endogenous peroxynitrite: dyad of Cy3 and Cy5. J Am Chem Soc 138:10778–10781. https://doi.org/10.1021/jacs.6b06398

    Article  CAS  PubMed  Google Scholar 

  97. Ong JX, Lim CSQ, Le HV, Ang WH (2019) A ratiometric fluorescent probe for cisplatin: investigating the intracellular reduction of platinum (IV) prodrug complexes. Angew Chem Int Ed 58:164–167. https://doi.org/10.1002/ange.201810361

    Article  CAS  Google Scholar 

  98. Aron AT, Loehr MO, Bogena J, Chang CJ (2016) An endoperoxide reactivity-based FRET probe for ratiometric fluorescence imaging of labile iron pools in living cells. J Am Chem Soc 138:14338–14346. https://doi.org/10.1021/jacs.6b08016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Myochin T, Hanaoka K, Iwaki S, Ueno T, Komatsu T, Terai T, Nagano T, Urano Y (2015) Development of a series of near-infrared dark quenchers based on Si-rhodamines and their application to fluorescent probes. J Am Chem Soc 137:4759–4765. https://doi.org/10.1021/jacs.5b00246

    Article  CAS  PubMed  Google Scholar 

  100. Yuan Y, Zhang R, Cheng X, Xu S, Liu B (2016) A FRET probe with AIEgen as the energy quencher: dual signal turn-on for self-validated caspase detection. Chem Sci 7:4245–4250. https://doi.org/10.1039/C6SC00055J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wu Q, Zhang KY, Dai P, Zhu H, Wang Y, Song L, Wang L, Liu S, Zhao Q, Huang W (2020) Bioorthogonal “labeling after recognition” affording an FRET-based luminescent probe for detecting and imaging caspase-3 via photoluminescence lifetime imaging. J Am Chem Soc 142:1057–1064. https://doi.org/10.1021/jacs.9b12191

    Article  CAS  PubMed  Google Scholar 

  102. Ho FC, Huang KH, Cheng HW, Huang YJ, Wu CH, Wu JI, Chen SY, Lin HC (2021) FRET processes of bi-fluorophoric sensor material containing tetraphenylethylene donor and optical-switchable merocyanine acceptor for lead ion (Pb2+) detection in semi-aqueous media. Dyes Pigments 189:109238. https://doi.org/10.1016/j.dyepig.2021.109238

    Article  CAS  PubMed  Google Scholar 

  103. Li M, Long S, Kang Y, Guo L, Wang J, Fan J, Du J, Peng X (2018) De novo design of phototheranostic sensitizers based on structure-inherent targeting for enhanced cancer ablation. J Am Chem Soc 140:15820–15826. https://doi.org/10.1021/jacs.8b09117

    Article  CAS  PubMed  Google Scholar 

  104. Xue X, Jin S, Zhang C, Yang K, Huo S, Chen F, Zou G, Liang XJ (2015) Probe-inspired nano-prodrug with dual-color fluorogenic property reveals spatiotemporal drug release in living cells. ACS Nano 9:2729–2739. https://doi.org/10.1021/nn5065452

    Article  CAS  PubMed  Google Scholar 

  105. Ou P, Zhang R, Liu Z, Tian X, Han G, Liu B, Hu Z, Zhang Z (2019) Gasotransmitter regulation of phosphatase activity in live cells studied by three-channel imaging correlation. Angew Chem Int Ed 58:2261–2265. https://doi.org/10.1002/anie.201811391

    Article  CAS  Google Scholar 

  106. Umezawa K, Yoshida M, Kamiya M, Yamasoba T, Urano Y (2017) Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics. Nat Chem 9:279–286. https://doi.org/10.1038/nchem.2648

    Article  CAS  PubMed  Google Scholar 

  107. Cecioni S, Vocadlo DJ (2017) Carbohydrate bis-acetal-based substrates as tunable fluorescence-quenched probes for monitoring exo-glycosidase activity. J Am Chem Soc 139:8392–8395. https://doi.org/10.1021/jacs.7b01948

    Article  CAS  PubMed  Google Scholar 

  108. Zheng K, Bodedla G, Hou Y, Zhang J, Liang R, Zhao J, Phillips D, Zhu X (2022) Enhanced cocatalyst-free photocatalytic H2 evolution by the synergistic AIE and FRET for an Ir-complex conjugated porphyrin. J Mater Chem A 10:4440–4445. https://doi.org/10.1039/D1TA10294J

    Article  CAS  Google Scholar 

  109. Rajdev P, Ghosh S (2018) Fluorescence resonance energy transfer (FRET): a powerful tool for probing amphiphilic polymer aggregates and supramolecular polymers. J Phys Chem B 123:327–342. https://doi.org/10.1021/acs.jpcb.8b09441

    Article  CAS  PubMed  Google Scholar 

  110. Jiang J, Qian Y, Xu Z, Lv Z, Tao P, Xie M, Liu S, Huang W, Zhao Q (2019) Enhancing singlet oxygen generation in semiconducting polymer nanoparticles through fluorescence resonance energy transfer for tumor treatment. Chem Sci 10:5085–5094. https://doi.org/10.1039/C8SC05501G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Besford QA, Yong H, Merlitz H, Christofferson AJ, Sommer J-U, Uhlmann P, Fery A (2021) FRET-integrated polymer brushes for spatially resolved sensing of changes in polymer conformation. Angew Chem Int Ed 60:16600–16606. https://doi.org/10.1002/ange.202104204

    Article  CAS  Google Scholar 

  112. Polgar AM, Tonge CM, Christopherson CJ, Paisley NR, Reyes AC, Hudson ZM (2020) Thermally assisted fluorescent polymers: Polycyclic aromatic materials for high color purity and white-light emission. ACS Appl Mater Interfaces 12:38602–38613. https://doi.org/10.1021/acsami.0c07892

    Article  CAS  PubMed  Google Scholar 

  113. Lv Y, Liu M, Zhang Y, Wang X, Zhang F, Li F, Bao WE, Wang J, Zhang Y, Wei W, Ma G, Zhao L, Tian Z (2018) Cancer cell membrane-biomimetic nanoprobes with two-photon excitation and near-infrared emission for intravital tumor fluorescence imaging. ACS Nano 12:1350–1358. https://doi.org/10.1021/acsnano.7b07716

    Article  CAS  PubMed  Google Scholar 

  114. Hu J, Wang Y, Li Q, Shao S, Wang L, Jing X, Wang F (2021) Hyperfluorescent polymers enabled by through-space charge transfer polystyrene sensitizers for high-efficiency and full-color electroluminescence. Chem Sci 12:13083–13091. https://doi.org/10.1039/D1SC04389G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Guo X, Wang L, Duval K, Fan J, Zhou S, Chen Z (2018) Dimeric drug polymeric micelles with acid-active tumor targeting and FRET-traceable drug release. Adv Mater 30:1705436. https://doi.org/10.1002/adma.201705436

    Article  CAS  Google Scholar 

  116. Fang B, Chu M, Tan L, Li P, Hou Y, Shi Y, Zhao YS, Yin M (2019) Near-infrared microlasers from self-assembled spiropyrane-based microsphercial caps. ACS Appl Mater Interfaces 11:38226–38231. https://doi.org/10.1021/acsami.9b10189

    Article  CAS  PubMed  Google Scholar 

  117. Zhang J, Fu Y, Han HH, Zang Y, Li J, He XP, Feringa BL, Tian H (2017) Remote light-controlled intracellular target recognition by photochromic fluorescent glycoprobes. Nat Commun 8:987. https://doi.org/10.1038/s41467-017-01137-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nhien PQ, Chou WL, Cuc TTK, Khang TM, Wu CH, Thirumalaivasan N, Hue BTB, Wu JI, Wu SP, Lin HC (2020) Multi-stimuli responsive FRET processes of bifluorophoric AIEgens in an amphiphilic copolymer and its application to cyanide detection in aqueous media. ACS Appl Mater Interfaces 12:10959–10972. https://doi.org/10.1021/acsami.9b21970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang J, Lv Y, Wan W, Wang X, Li AD, Tian Z (2016) Photoswitching near-infrared fluorescence from polymer nanoparticles catapults signals over the region of noises and interferences for enhanced sensitivity. ACS Appl Mater Interfaces 8:4399–4406. https://doi.org/10.1021/acsami.5b10837

    Article  CAS  PubMed  Google Scholar 

  120. Huang Z, Hu Y, Jin X, Zhao Y, Su J, Ma X (2021) Light-responsive circularly polarized luminescence polymers with INHIBIT logic function. Adv Optical Mater 9:2100135. https://doi.org/10.1002/adom.202100135

    Article  CAS  Google Scholar 

  121. Singh A, Verma P, Laha S, Samanta D, Roy S, Maji TK (2020) Photochromic conjugated microporous polymer manifesting bio-inspired pcFRET and logic gate functioning. ACS Appl Mater Interfaces 12:20991–20997. https://doi.org/10.1021/acsami.0c05182

    Article  CAS  PubMed  Google Scholar 

  122. Zhao J, Zhang Z, Cheng L, Bai R, Zhao D, Wang Y, Yu W, Yan X (2022) Mechanically interlocked vitrimers. J Am Chem Soc 144:872–882. https://doi.org/10.1021/jacs.1c10427

    Article  CAS  PubMed  Google Scholar 

  123. Arumugaperumal R, Venkatesan P, Shukla T, Raghunath P, Singh R, Wu SP, Lin MC, Lin HC (2018) Multi-stimuli-responsive high contrast fluorescence molecular controls with a far-red emitting BODIPY-based [2]rotaxane. Sens Actuators B Chem 270:382–395. https://doi.org/10.1016/j.snb.2018.05.062

    Article  CAS  Google Scholar 

  124. Cuc TTK, Nhien PQ, Khang TM, Weng CC, Wu CH, Hue BTB, Li YK, Wu JI, Lin HC (2020) Optimization of FRET behavior in photoswitchable [2]rotaxanes containing bifluorophoric naphthalimide donor and merocyanine acceptor with sensor approaches toward sulfite detection. Chem Mater 32:9371–9389. https://doi.org/10.1021/acs.chemmater.0c03314

    Article  CAS  Google Scholar 

  125. Nhien PQ, Cuc TTK, Khang TM, Wu CH, Hue BTB, Wu JI, Mansel BW, Chen HL, Lin HC (2020) Highly efficient Förster resonance energy transfer modulations of dual-AIEgens between a tetraphenylethylene donor and a merocyanine acceptor in photo-switchable [2]rotaxanes and reversible photo-patterning applications. ACS Appl Mater Interfaces 12:47921–47938. https://doi.org/10.1021/acsami.0c12726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shukla T, Arumugaperumal R, Raghunath P, Lin MC, Lin CM, Lin HC (2017) Novel supramolecular conjugated polyrotaxane as an acid-base controllable optical molecular switch. Sens Actuators B Chem 243:84–95. https://doi.org/10.1016/j.snb.2016.11.130

    Article  CAS  Google Scholar 

  127. Cuc TTK, Nhien PQ, Khang TM, Chen HY, Wu CH, Hue BTB, Li YK, Wu JI, Lin HC (2021) Controllable FRET behaviors of supramolecular host-guest systems as ratiometric aluminum ion sensors manipulated by tetraphenylethylene-functionalized macrocyclic host donor and multistimuli-responsive fluorescein-based guest acceptor. ACS Appl Mater Interfaces 13:20662–20680. https://doi.org/10.1021/acsami.1c02994

    Article  CAS  Google Scholar 

  128. Ho FC, Huang YJ, Weng CC, Wu CH, Li YK, Wu JI, Lin HC (2020) Efficient FRET approaches toward copper(II) and cyanide detections via host-guest interactions of photo-switchable [2]pseudo-rotaxane polymers containing naphthalimide and merocyanine moieties. ACS Appl Mater Interfaces 12:53257–53273. https://doi.org/10.1021/acsami.0c15049

    Article  CAS  PubMed  Google Scholar 

  129. Arumugaperumal R, Shellaiah M, Lai YK, Venkatesan P, Raghunath P, Wu SP, Lin MC, Sun KW, Chung WS, Lin HC (2021) Acid–base controllable nanostructures and the fluorescence detection of H2PO4 by the molecular shuttling of tetraphenylethene-based [2]rotaxanes. J Mater Chem C 9:3215–3228. https://doi.org/10.1039/D0TC05358A

    Article  CAS  Google Scholar 

  130. Gouda C, Barik D, Maitra C, Liang KC, Ho FC, Srinivasadesikan V, Lin MC, Wu SP, Lin HC (2021) Application of stimuli-responsive FRET behavior toward cyanide detection in a photo-switchable [2]pseudorotaxane polymer containing the BODIPY donor and the merocyanine acceptor. J Mater Chem C 9:2321–2333. https://doi.org/10.1039/D0TC05000H

    Article  CAS  Google Scholar 

  131. Singh R, Xiao CC, Wei CL, Ho FC, Khang TM, Gouda C, Wu TK, Li YK, Wei KH, Lin HC (2021) Optical-switchable energy transfer controlled by multiple-responsive turn-on fluorescence via metal–ligand and host-guest interactions in diarylethene-based [2]pseudo-rotaxane polymers. Mater Chem Front 5:438–449. https://doi.org/10.1039/D0QM00605J

    Article  CAS  Google Scholar 

  132. Yu G, Wu D, Li Y, Zhang Z, Shao L, Zhou J, Hu Q, Tang G, Huang F (2016) A pillar[5]arene-based [2]rotaxane lights up mitochondria. Chem Sci 7:3017–3024. https://doi.org/10.1039/C6SC00036C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Li Z, Song N, Yang YW (2019) Stimuli-responsive drug-delivery systems based on supramolecular nanovalves. Matter 1:345–368. https://doi.org/10.1016/j.matt.2019.05.019

    Article  Google Scholar 

  134. Wu M-X, Yan H-J, Gao J, Cheng Y, Yang J, Wu J-R, Gong B-J, Zhang H-Y, Yang Y-W (2018) Multifunctional supramolecular materials constructed from polypyrrole@UiO-66 nanohybrids and pillararene nanovalves for targeted chemophotothermal therapy. ACS Appl Mater Interfaces 10:34655–34663. https://doi.org/10.1021/acsami.8b13758

    Article  CAS  PubMed  Google Scholar 

  135. Yang J, Yu X, Song J-I, Song Q, Hall SCL, Yu G, Perrier S (2022) Aggregation-induced emission featured supramolecular tubisomes for imaging-guided drug delivery. Angew Chem Int Ed 61:e202115208. https://doi.org/10.1002/anie.202115208

    Article  CAS  Google Scholar 

  136. Hao M, Sun G, Zuo M, Xu Z, Chen Y, Hu X-Y, Wang L (2020) A supramolecular artificial light-harvesting system with two-step sequential energy transfer for photochemical catalysis. Angew Chem Int Ed 59:10095–10100. https://doi.org/10.1002/anie.201912654

    Article  CAS  Google Scholar 

  137. Guo S, Song Y, He Y, Hu X-Y, Wang L (2018) Highly efficient artificial light-harvesting systems constructed in aqueous solution based on supramolecular self-assembly. Angew Chem Int Ed 57:3163–3167. https://doi.org/10.1002/ange.201800175

    Article  CAS  Google Scholar 

  138. Dong Z, Bi Y, Cui H, Wang Y, Wang C, Li Y, Jin H, Wang C (2019) AIE supramolecular assembly with FRET effect for visualizing drug delivery. ACS Appl Mater Interfaces 11:23840–23847. https://doi.org/10.1021/acsami.9b04938

    Article  CAS  PubMed  Google Scholar 

  139. Wu H, Chen Y, Liu Y (2017) Reversibly photoswitchable supramolecular assembly and its application as a photoerasable fluorescent ink. Adv Mater 29:1605271. https://doi.org/10.1002/adma.201605271

    Article  CAS  Google Scholar 

  140. Chen X-M, Cao Q, Bisoyi HK, Wang M, Yang H, Li Q (2020) An efficient near-infrared emissive artificial supramolecular light-harvesting system for imaging in the Golgi apparatus. Angew Chem Int Ed 59:10493–10497. https://doi.org/10.1002/ange.202003427

    Article  CAS  Google Scholar 

  141. Wu D, Li Y, Yang J, Shen J, Zhou J, Hu Q, Yu G, Tang G, Chen X (2017) Supramolecular nanomedicine constructed from cucurbit [8]uril-based amphiphilic brush copolymer for cancer therapy. ACS Appl Mater Interfaces 9:44392–44401. https://doi.org/10.1021/acsami.7b16734

    Article  CAS  PubMed  Google Scholar 

  142. Dwivedi AK, Singh R, Singh A, Wei KH, Wu CY, Lyu PC, Lin HC (2016) Novel water-soluble cyclodextrin-based conjugated polymer for selective host-guest interactions of cationic surfactant CTAB and reverse FRET with Rhodamine B tagged adamantyl guest. Macromolecules 49:5587–5598. https://doi.org/10.1021/acs.macromol.6b00789

    Article  CAS  Google Scholar 

  143. Singh R, Dwivedi AK, Singh A, Lin CM, Arumugaperumal R, Wei KH, Lin HC (2016) Exploration of energy modulations in novel RhB-TPE-based bichromophoric materials via interactions of Cu2+ ion under various semiaqueous and micellar conditions. ACS Appl Mater Interfaces 8:6751–6762. https://doi.org/10.1021/acsami.5b12768

    Article  CAS  PubMed  Google Scholar 

  144. Vafaei S, Allabush F, Tabaei SR, Male L, Dafforn TR, Tucker JH, Mendes PM (2021) Förster resonance energy transfer nanoplatform based on recognition-induced fusion/fission of DNA mixed micelles for nucleic acid sensing. ACS Nano 15:8517–8524. https://doi.org/10.1021/acsnano.1c00156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Morla-Folch J, Vargas-Nadal G, Zhao T, Sissa C, Ardizzone A, Kurhuzenkau S, Köber M, Uddin M, Painelli A, Veciana J, Belfield KD, Ventosa N (2020) Dye-loaded quatsomes exhibiting FRET as nanoprobes for bioimaging. ACS Appl Mater Interfaces 12:20253–20262. https://doi.org/10.1021/acsami.0c03040

    Article  CAS  PubMed  Google Scholar 

  146. Tao M, Liang X, Guo J, Zheng S, Qi Q, Cao Z, Mi Y, Zhao Z (2021) Dynamic photochromic polymer nanoparticles based on matrix-dependent Förster resonance energy transfer and aggregation-induced emission properties. ACS Appl Mater Interfaces 13:33574–33583. https://doi.org/10.1021/acsami.1c09677

    Article  CAS  PubMed  Google Scholar 

  147. Verma P, Singh A, Maji TK (2021) Photo-modulated wide-spectrum chromism in Eu3+ and Eu3+/Tb3+ photochromic coordination polymer gels: application in decoding secret information. Chem Sci 12:2674–2682. https://doi.org/10.1039/D0SC05721E

    Article  CAS  Google Scholar 

  148. Huang C-B, Xu L, Zhu J-L, Wang Y-X, Sun B, Li X, Yang H-B (2017) Real-time monitoring the dynamics of coordination-driven self-assembly by fluorescence-resonance energy transfer. J Am Chem Soc 139:9459–9462. https://doi.org/10.1021/jacs.7b04659

    Article  CAS  PubMed  Google Scholar 

  149. Qin Y, Chen L-J, Dong F, Jiang S-T, Yin G-Q, Li X, Tian Y, Yang H-B (2019) Light-controlled generation of singlet oxygen within a discrete dual-stage metallacycle for cancer therapy. J Am Chem Soc 141:8943–8950. https://doi.org/10.1021/jacs.9b02726

    Article  CAS  PubMed  Google Scholar 

  150. Zhou B, Yan D (2019) Hydrogen-bonded two-component ionic crystals showing enhanced long-lived room-temperature phosphorescence via TADF-assisted Förster resonance energy transfer. Adv Funct Mater 29:1807599. https://doi.org/10.1002/adfm.201807599

    Article  CAS  Google Scholar 

  151. Peng S, Wang X, Zhang L, He S, Zhao XS, Huang X, Chen C (2020) Target search and recognition mechanisms of glycosylase AlkD revealed by scanning FRET-FCS and Markov state models. Proc Natl Acad Sci USA 117:21889–21895. https://doi.org/10.1073/pnas.2002971117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wu H, Tong C (2018) A specific turn-on fluorescent sensing for ultrasensitive and selective detection of phosphate in environmental samples based on antenna effect-improved FRET by surfactant. ACS Sens 3:1539–1545. https://doi.org/10.1021/acssensors.8b00343

    Article  CAS  PubMed  Google Scholar 

  153. Guan W, Yang T, Lu C (2020) Measurement of solubilization location in micelles using anchored aggregation-induced emission donors. Angew Chem Int Ed 59:12800–12805. https://doi.org/10.1002/ange.202005085

    Article  CAS  Google Scholar 

  154. Yang D, Duan P, Zhang L, Liu M (2017) Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix. Nat Commun 8:15727. https://doi.org/10.1038/ncomms15727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ji L, Sang Y, Ouyang G, Yang D, Duan P, Jiang Y, Liu M (2019) Cooperative chirality and sequential energy transfer in a supramolecular light-harvesting nanotube. Angew Chem Int Ed 58:844–848. https://doi.org/10.1002/anie.201812642

    Article  CAS  Google Scholar 

  156. Ji L, Zhao Y, Tao M, Wang H, Niu D, Ouyang G, Xia A, Liu M (2020) Dimension-tunable circularly polarized luminescent nanoassemblies with emerging selective chirality and energy transfer. ACS Nano 14:2373–2384. https://doi.org/10.1021/acsnano.9b09584

    Article  CAS  PubMed  Google Scholar 

  157. Du S, Zhu X, Zhang L, Liu M (2021) Switchable circularly polarized luminescence in supramolecular gels through photomodulated FRET. ACS Appl Mater Interfaces 13:15501–15508. https://doi.org/10.1021/acsami.1c00181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for funding from the National Science and Technology Council (NSTC), Taiwan. This work is supported by National Science and Technology Council, Taiwan (grant no. MOST 110-2221-E-A49-003-MY3, MOST 110-2113-M-A49-018, MOST 110-2811-M-009-511, MOST 110-2113-M-A49-011, and MOST 111-2634-F-A49-007) and the Center for Emergent Functional Matter Science of National Yang Ming Chiao Tung University (NYCU) from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. The authors also thank Prof. Yaw-Kuen Li for fruitful discussion and helpful support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Cheu Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CH., Nhien, P.Q., Cuc, T.T.K. et al. Designs and Applications of Multi-stimuli Responsive FRET Processes in AIEgen-Functionalized and Bi-fluorophoric Supramolecular Materials. Top Curr Chem (Z) 381, 2 (2023). https://doi.org/10.1007/s41061-022-00412-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00412-7

Keywords

Navigation