Skip to main content
Log in

Sustainable Solvent-Free Diels–Alder Approaches in the Development of Constructive Heterocycles and Functionalized Materials: A Review

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

The Diels–Alder reaction (DAR) is found in myriad applications in organic synthesis and medicinal chemistry for drug development, as it is the method of choice for the expedient synthesis of complex natural compounds and innovative materials including nanomaterials, graphene expanses, and polymeric nanofibers. Furthermore, the greatest focus of attention of DARs is on the consistent reaction procedure with stimulus yields by highly stereo- and regioselective mechanistic pathways. Therefore, the present review is intended to summarize conventional solvent-free (SF) DARs for the expedient synthesis of heterocyclic compounds and materials. In particular, this review deals with the DARs of mechanochemical grinding, catalysis (including stereoselective catalysts), thermal, and electromagnetic radiation (such as microwave [MW], infrared [IR], and ultraviolet [UV] irradiation) in SF procedures. Therefore, this comprehensive review validates the application of DARs to pharmaceutical innovations and biorenewable materials through consistent synthetic approaches.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35

Similar content being viewed by others

References

  1. Cao MH, Green NJ, Xu SZ (2017) Application of the aza-Diels–Alder reaction in the synthesis of natural products. Org Biomol Chem 15(15):3105–3129. https://doi.org/10.1039/C6OB02761J

    Article  CAS  PubMed  Google Scholar 

  2. Houk KN, Liu F, Yang Z, Seeman JI (2021) Evolution of the Diels–Alder reaction mechanism since the 1930s: Woodward, Houk with Woodward, and the influence of computational chemistry on understanding cycloadditions. Angew Chem Int Ed 60(23):12660–12681. https://doi.org/10.1002/anie.202001654

    Article  CAS  Google Scholar 

  3. Huang G, Kouklovsky C, de la Torre A (2020) Inverse-electron-demand Diels–Alder reactions of 2-pyrones: bridged lactones and beyond. Chem Eur J 27:4760–4788. https://doi.org/10.1002/chem.202003980

    Article  CAS  Google Scholar 

  4. Pałasz A (2016) Recent advances in inverse-electron-demand hetero-Diels–Alder reactions of 1-oxa-1, 3-butadienes. Top Curr Chem 374(3):1–37. https://doi.org/10.1007/s41061-016-0026-2

    Article  CAS  Google Scholar 

  5. Carey FA, Sundberg RJ (2007) Advanced organic chemistry: part B: reaction and synthesis, 5th edn. Springer, New York. https://doi.org/10.1007/978-0-387-44899-2

    Book  Google Scholar 

  6. Eschenbrenner-Lux V, Kumar K, Waldmann H (2014) The asymmetric hetero-Diels–Alder reaction in the syntheses of biologically relevant compounds. Angew Chem Int Ed 53(42):11146–11157. https://doi.org/10.1002/anie.201404094

    Article  CAS  Google Scholar 

  7. Kotha S, Chavan AS, Goyal D (2019) Diversity-oriented approaches to polycycles and heterocycles via enyne metathesis and Diels–Alder reaction as key steps. ACS Omega 4(27):22261–22273. https://doi.org/10.1021/acsomega.9b03020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li W, Zhou L, Zhang J (2016) Recent progress in dehydro (genative) Diels–Alder reaction. Chem Euro J 22(5):1558–1571. https://doi.org/10.1002/chem.201503571

    Article  CAS  Google Scholar 

  9. Windmon N, Dragojlovic V (2008) Diels–Alder reactions in the presence of a minimal amount of water. Green Chem Lett Rev 1(3):155–163. https://doi.org/10.1080/17518250802482505

    Article  CAS  Google Scholar 

  10. Gregoritza M, Brandl FP (2015) The Diels–Alder reaction: a powerful tool for the design of drug delivery systems and biomaterials. Eur J Pharm Biopharm 97:438–453. https://doi.org/10.1016/j.ejpb.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  11. Kurpanik A, Matussek M, Lodowski P, Szafraniec-Gorol G, Krompiec M, Krompiec S (2020) Diels–Alder cycloaddition to the bay region of perylene and its derivatives as an attractive strategy for PAH core expansion: theoretical and practical aspects. Molecules 25(22):5373. https://doi.org/10.3390/molecules25225373

    Article  CAS  PubMed Central  Google Scholar 

  12. Oluwasanmi A, Hoskins C (2021) Potential use of the Diels–Alder reaction in biomedical and nanomedicine applications. Int J Pharm. https://doi.org/10.1016/j.ijpharm.2021.120727

    Article  PubMed  Google Scholar 

  13. Negri V, Pacheco-Torres J, Calle D, López-Larrubia P (2020) Carbon nanotubes in biomedicine. Top Curr Chem (Z) 378:15. https://doi.org/10.1007/s41061-019-0278-8

    Article  CAS  Google Scholar 

  14. Stolle A, Szuppa T, Leonhardt SE, Ondruschka B (2011) Ball milling in organic synthesis: solutions and challenges. Chem Soc Rev 40(5):2317–2329. https://doi.org/10.1039/C0CS00195C

    Article  CAS  PubMed  Google Scholar 

  15. Wang GW (2013) Mechanochemical organic synthesis. Chem Soc Rev 42(18):7668. https://doi.org/10.1039/C3CS35526H

    Article  CAS  PubMed  Google Scholar 

  16. Gonnet L, Chamayou A, André-Barrès C, Micheau JC, Guidetti B, Sato T, Baron M, Baltas M, Calvet R (2021) Elucidation of the Diels–Alder reaction kinetics between diphenylfulvene and maleimide by mechanochemistry and in solution. ACS Sustain Chem Eng 9(12):4453–4462. https://doi.org/10.1021/acssuschemeng.0c08314

    Article  CAS  Google Scholar 

  17. Clarke PA, Santos S, Martin WH (2007) Combining pot, atom and step economy (PASE) in organic synthesis. Synthesis of tetrahydropyran-4-ones. Green Chem 9(5):438–440. https://doi.org/10.1039/B700923B

    Article  CAS  Google Scholar 

  18. Margetic D, Štrukil V (2016) Mechanochemical organic synthesis. Elsevier. https://doi.org/10.1016/C2014-0-01621-8

    Article  Google Scholar 

  19. Lavanya M, Lin C, Mao J, Thirumalai D, Aabaka SR, Yang X, Mao J, Huang Z, Zhao J (2021) Synthesis and anticancer properties of functionalized 1, 6-naphthyridines. Top Curr Chem 379(2):1–75. https://doi.org/10.1007/s41061-020-00314-6

    Article  CAS  Google Scholar 

  20. Rammohan A, Reddy JS, Sravya G, Rao CN, Zyryanov GV (2020) Chalcone synthesis, properties and medicinal applications: a review. Environ Chem Lett 18:433–458. https://doi.org/10.1007/s10311-019-00959-w

    Article  CAS  Google Scholar 

  21. Achar TK, Bose A, Mal P (2017) Mechanochemical synthesis of small organic molecules. Beilstein J Org Chem 13(1):1907–1931. https://doi.org/10.3762/bjoc.13.186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stevenson R, De Bo G (2017) Controlling reactivity by geometry in retro-Diels–Alder reactions under tension. J Am Chem Soc 139(46):16768–16771. https://doi.org/10.1021/jacs.7b08895

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Z, Peng ZW, Hao MF, Gao JG (2010) Mechanochemical Diels–Alder cycloaddition reactions for straightforward synthesis of endo-norbornene derivatives. Synlett 19:2895–2898. https://doi.org/10.1055/s-0030-1259030

    Article  CAS  Google Scholar 

  24. Do JL, Friščić T (2017) Mechanochemistry: a force of synthesis. ACS Cent Sci 3(1):13. https://doi.org/10.1021/acscentsci.6b00277

    Article  CAS  PubMed  Google Scholar 

  25. McKissic KS, Caruso JT, Blair RG, Mack J (2014) Comparison of shaking versus baking: further understanding the energetics of a mechanochemical reaction. Green Chem 16(3):1628–1632. https://doi.org/10.1039/C3GC41496E

    Article  CAS  Google Scholar 

  26. Suryanarayana C (2001) Mechanical alloying and milling. Progr Mater Sci 46(1–2):1–184. https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  CAS  Google Scholar 

  27. Maleki A, Javanshir S, Naimabadi M (2014) Facile synthesis of imidazo [1, 2-a] pyridines via a one-pot three-component reaction under solvent-free mechanochemical ball-milling conditions. RSC Adv 4(57):30229–30232. https://doi.org/10.1039/C3RA43221A

    Article  CAS  Google Scholar 

  28. Agarwal J, Rani R, Peddinti RK (2017) Mechanochemical grinding Diels–Alder reaction: highly efficient and rapid access to bi-, tri-, and tetracyclic systems. Synlett 28(11):1336–1340. https://doi.org/10.1055/s-0036-1558970

    Article  CAS  Google Scholar 

  29. Wang FJ, Xu H, Xin M, Zhang Z (2016) I2-mediated amination/cyclization of ketones with 2-aminopyridines under high-speed ball milling: solvent-and metal-free synthesis of 2,3-substituted imidazo[1,2-a]pyridines and zolimidine. Mol Divers 20(3):659–666. https://doi.org/10.1007/s11030-016-9666-y

    Article  CAS  PubMed  Google Scholar 

  30. Suri M, Hussain FL, Gogoi C, Das P, Pahari P (2020) Magnetically recoverable silica catalysed solvent-free domino Knoevenagel-hetero-Diels–Alder reaction to access divergent chromenones. Org Biomol Chem 18(11):2058–2062. https://doi.org/10.1039/D0OB00284D

    Article  CAS  PubMed  Google Scholar 

  31. Ando RA, Junior GAB, Brocksom TJ, Donatoni MC, de Oliveira KT, Dos Santos AA (2014) Solvent-free Diels–Alder reactions catalyzed by FeCl3 on Aerosil ((R)) silica. Tetrahedron 70(20):3231–3238. https://doi.org/10.1016/j.tet.2014.02.017

    Article  CAS  Google Scholar 

  32. Soleimani Amiri S (2020) Green production and antioxidant activity study of new pyrrolo [2, 1-a] isoquinolines. J Heterocyclic Chem 57(11):4057–4069. https://doi.org/10.1002/jhet.4115

    Article  CAS  Google Scholar 

  33. Jiang Y, Chen CF (2011) Recent developments in synthesis and applications of triptycene and pentiptycene derivatives. Eur J Org Chem 2011(32):6377–6403. https://doi.org/10.1002/ejoc.201100684

    Article  CAS  Google Scholar 

  34. Zyryanov GV, Palacios MA, Anzenbacher P Jr (2008) Simple molecule-based fluorescent sensors for vapor detection of TNT. Org Lett 10(17):3681–3684. https://doi.org/10.1021/ol801030u

    Article  CAS  PubMed  Google Scholar 

  35. Zhao Y, Rocha SV, Swager TM (2016) Mechanochemical synthesis of extended iptycenes. J Am Chem Soc 138(42):13834–13837. https://doi.org/10.1021/jacs.6b09011

    Article  CAS  PubMed  Google Scholar 

  36. Tan YJ, Zhang Z, Wang FJ, Wu HH, Li QH (2014) Mechanochemical milling promoted solvent-free imino Diels–Alder reaction catalyzed by FeCl3: diastereoselective synthesis of cis-2, 4-diphenyl-1,2,3,4-tetrahydroquinolines. RSC Adv 4(67):35635–35638. https://doi.org/10.1039/C4RA05252H

    Article  CAS  Google Scholar 

  37. Janković N, Stefanović S, Petronijević J, Joksimović N, Novaković SB, Bogdanović GA, Muškinja J, Vraneš M, Ratković Z, Bugarčić Z (2018) Water-tuned tautomer-selective tandem synthesis of the 5, 6-dihydropyrimidin-4(3H)-ones, driven under the umbrella of sustainable chemistry. ACS Sustain Chem Eng 6(10):13358–13366. https://doi.org/10.1021/acssuschemeng.8b03127

    Article  CAS  Google Scholar 

  38. Valdez-Camacho JR, Cortés-Guzmán KP, Torres-Gómez H, Flores R, Leyva MA, Escalante J (2019) Kinetics, thermodynamics, and theoretical studies in a Diels–Alder dimerization process of 3-vinylindole derivative of the 3-indoleacetic acid: an auxin. ChemistrySelect 4(28):8311–8316. https://doi.org/10.1002/slct.201901141

    Article  CAS  Google Scholar 

  39. Long J, Hu J, Shen X, Ji B, Ding K (2002) Discovery of exceptionally efficient catalysts for solvent-free enantioselective hetero-Diels−Alder reaction. J Am Chem Soc 124(1):10–11. https://doi.org/10.1021/ja0172518

    Article  CAS  PubMed  Google Scholar 

  40. Kojima T, Inukai T (1970) Aluminum chloride catalyzed diene condensation. V. Selectivity-reactivity relation of dienophiles toward butadiene, isoprene, and 2-trifluoromethyl butadiene. J Org Chem 35(5):1342–1348. https://doi.org/10.1021/jo00830a019

    Article  CAS  Google Scholar 

  41. Fringuelli F, Girotti R, Pizzo F, Vaccaro L (2006) [AlCl3+ 2THF]: a new and efficient catalytic system for Diels–Alder cycloaddition of α, β-unsaturated carbonyl compounds under solvent-free conditions. Org Lett 8(12):2487–2489. https://doi.org/10.1021/ol060569q

    Article  CAS  PubMed  Google Scholar 

  42. Merchan Arenas DR, Kouznetsov VV (2014) Diastereoselective synthesis of dihydroisoindolo [2,1-a] quinolin-11-ones by solvent-free AMCell-SO3H-catalyzed imino Diels–Alder/intramolecular amide cyclization cascade reactions. J Org Chem 79(11):5327–5333. https://doi.org/10.1021/jo500516c

    Article  CAS  PubMed  Google Scholar 

  43. Díaz-Ortiz Á, Prieto P, De La Hoz A (2019) A critical overview on the effect of microwave irradiation in organic synthesis. Chem Rec 19(1):85–97. https://doi.org/10.1002/tcr.201800059

    Article  CAS  PubMed  Google Scholar 

  44. De la Hoz A, Díaz-Ortiz A, Prieto P (2016) Microwave-assisted green organic synthesis. CHAPTER 1. In: Stefanidis G, Stankiewicz A (eds) Alternative energy sources for green chemistry. Royal Society of Chemistry, London, pp 1–33. https://doi.org/10.1039/9781782623632-00001

    Chapter  Google Scholar 

  45. Sarma R, Sarmah MM, Prajapati D (2012) Microwave-promoted catalyst-and solvent-free aza-Diels–Alder reaction of aldimines with 6-[2-(dimethylamino) vinyl]-1, 3-dimethyluracil. J Org Chem 77(4):2018–2023. https://doi.org/10.1021/jo202346w

    Article  CAS  PubMed  Google Scholar 

  46. Flores-Conde MI, Reyes L, Herrera R, Rios H, Vazquez MA, Miranda R, Tamariz J, Delgado F (2012) Highly regio-and stereoselective Diels–Alder cycloadditions via two-step and multicomponent reactions promoted by infrared irradiation under solvent-free conditions. Int J Mol Sci 13(3):2590–2617. https://doi.org/10.3390/ijms13032590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Naskar S, Roy Chowdhury S, Mondal S, Maiti DK, Mishra S, Das I (2019) Visible-light-activated divergent reactivity of dienones: dimerization in neat conditions and regioselective E to Z isomerization in the solvent. Org Lett 21(6):1578–1582. https://doi.org/10.1021/acs.orglett.9b00083

    Article  CAS  PubMed  Google Scholar 

  48. Kumamoto K, Fukada I, Kotsuki H (2004) Diels–Alder reaction of thiophene: dramatic effects of high-pressure/solvent-free conditions. Angew Chem Int Ed 43(15):2015–2017. https://doi.org/10.1002/anie.200353487

    Article  CAS  Google Scholar 

  49. Sun D, Sato F, Yamada Y, Sato S (2013) Solvent-free Diels–Alder reaction in a closed batch system. Bull Chem Soc Jpn 86(2):276–282. https://doi.org/10.1246/bcsj.20120247

    Article  CAS  Google Scholar 

  50. Crouillebois L, Pantaine L, Marrot J, Coeffard V, Moreau X, Greck C (2015) Solvent-and catalyst-free synthesis of nitrogen-containing bicycles through hemiaminal formation/diastereoselective hetero-Diels–Alder reaction with diazenes. J Org Chem 80(1):595–601. https://doi.org/10.1021/jo502087a

    Article  CAS  PubMed  Google Scholar 

  51. Patterson AL, May MD, Visser BJ, Kislukhin AA, Vosburg DA (2013) Solvent-free synthesis and fluorescence of a thiol-reactive sensor for undergraduate organic laboratories. J Chem Educ 90(12):1685–1687. https://doi.org/10.1021/ed400445j

    Article  CAS  Google Scholar 

  52. Krinochkin AP, Reddy GM, Kopchuk DS, Slepukhin PA, Shtaitz YK, Khalymbadzha IA, Kovalev IS, Kim GA, Ganebnykh IN, Zyryanov GV, Chupakhin ON (2021) 2-Aminooxazoles as novel dienophiles in the inverse demand Diels–Alder reaction with 1, 2, 4-triazines. Mendeleev Commun 31(4):542–544. https://doi.org/10.1016/j.mencom.2021.07.035

    Article  CAS  Google Scholar 

  53. Hu Y, Liu C, Wang P, Li G, Wang A, Cong Y, Liang X, Li W, Zhang X, Li N (2020) Sustainable production of safe plasticizers with bio-based fumarates and 1, 3-dienes. Ind Eng Chem Res 59(16):7367–7374. https://doi.org/10.1021/acs.iecr.9b05840

    Article  CAS  Google Scholar 

  54. Flores-Larios IY, López-Garrido L, Martínez-Martínez FJ, González J, García-Báez EV, Cruz A, Padilla-Martínez II (2010) Thermal [4+ 2] cycloadditions of 3-acetyl-, 3-carbamoyl-, and 3-ethoxycarbonyl-coumarins with 2, 3-dimethyl-1, 3-butadiene under solventless conditions: a structural study. Molecules 15(3):1513–1530. https://doi.org/10.3390/molecules15031513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang T, Hoye TR (2015) Diels–Alderase-free, bis-pericyclic,[4+ 2] dimerization in the biosynthesis of (±)-paracaseolide A. Nat Chem 7(8):641–645. https://doi.org/10.1038/nchem.2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zentar H, Arias F, Haidour A, Alvarez-Manzaneda R, Chahboun R, Alvarez-Manzaneda E (2018) Protecting-group-free synthesis of cassane-type furan diterpenes via a decarboxylative dienone-phenol rearrangement. Org Lett 20(22):7007–7010. https://doi.org/10.1021/acs.orglett.8b02867

    Article  CAS  PubMed  Google Scholar 

  57. Quijano-Quiñones RF, Castro-Segura CS, Mena-Rejón GJ, Quesadas-Rojas M, Cáceres-Castillo D (2018) Biosynthesis of grandione: an example of tandem hetero Diels–Alder/Retro–Claisen rearrangement reaction? Molecules 23(10):2505. https://doi.org/10.3390/molecules23102505

    Article  CAS  PubMed Central  Google Scholar 

  58. Orzolek BJ, Rahman MA, Iovine PM (2018) Synthesis of biorenewable starch–Farnesene amphiphilic conjugates via transesterification of terpene-derived Diels–Alder adducts. ACS Sustain Chem Eng 6(10):13562–13569. https://doi.org/10.1021/acssuschemeng.8b03771

    Article  CAS  Google Scholar 

  59. Cao Y, Osuna S, Liang Y, Haddon RC, Houk KN (2013) Diels–Alder reactions of graphene: computational predictions of products and sites of reaction. J Am Chem Soc 135(46):17643–17649. https://doi.org/10.1021/ja410225u

    Article  CAS  PubMed  Google Scholar 

  60. Oshima T, Mikie T, Ikuma N, Yakuma H (2012) First kinetic evidence for the CH/π and π/π solute–solvent interaction of C60 in the Diels–Alder reaction with cyclohexadiene. Org Biomol Chem 10(9):1730–1734. https://doi.org/10.1039/C2OB06748J

    Article  CAS  PubMed  Google Scholar 

  61. Kalaoglu-Altan OI, Sanyal R, Sanyal A (2015) “Clickable” polymeric nanofibers through hydrophilic–hydrophobic balance: fabrication of robust biomolecular immobilization platforms. Biomacromol 16(5):1590–1597. https://doi.org/10.1021/acs.biomac.5b00159

    Article  CAS  Google Scholar 

  62. Oh CR, Lee DI, Park JH, Lee DS (2019) Thermally healable and recyclable graphene-nanoplate/epoxy composites via an in-situ Diels–Alder reaction on the graphene-nanoplate surface. Polymers 11(6):1057. https://doi.org/10.3390/polym11061057

    Article  CAS  PubMed Central  Google Scholar 

  63. Oh CR, Lee SH, Park JH, Lee DS (2019) Thermally self-healing graphene-nanoplate/polyurethane nanocomposites via diels–alder reaction through a one-shot process. Nanomaterials 9(3):434. https://doi.org/10.3390/nano9030434

    Article  CAS  PubMed Central  Google Scholar 

  64. Seo JM, Baek JB (2014) A solvent-free Diels–Alder reaction of graphite into functionalized graphene nanosheets. Chem Commun 50(93):14651–14653. https://doi.org/10.1039/C4CC07173E

    Article  CAS  Google Scholar 

  65. Yamada H, Ohkubo K, Kuzuhara D, Takahashi T, Sandanayaka AS, Okujima T, Ohara K, Ito O, Uno H, Ono N, Fukuzumi S (2010) Synthesis, crystal structure, and photodynamics of π-expanded porphyrin− fullerene dyads synthesized by Diels−Alder reaction. J Phy Chem B 114(45):14717–14728. https://doi.org/10.1021/jp102966x

    Article  CAS  Google Scholar 

  66. Cao R, Wang Y, Chen S, Han N, Liu H, Zhang X (2019) Multiresponsive shape-stabilized hexadecyl acrylate-grafted graphene as a phase change material with enhanced thermal and electrical conductivities. ACS Appl Mater Interfaces 11(9):8982–8991. https://doi.org/10.1021/acsami.8b18282

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Grants Council of the President of the Russian Federation (# NSh-1223.2022.1.3) and Russian Scientific Foundation (Grant # 21-13-00304).

Author information

Authors and Affiliations

Authors

Contributions

The authors AR and APK conceived the study and collected the literature associated with the review. AR, APK, and AFK performed the manuscript writing and analysis of the data. DSK and GVZ supported with their attentive discussions and advice to fulfill this study. The final version of the manuscript was submitted after it had been read and approved by all authors.

Corresponding authors

Correspondence to Aluru Rammohan or Grigory V. Zyryanov.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests related to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rammohan, A., Krinochkin, A.P., Khasanov, A.F. et al. Sustainable Solvent-Free Diels–Alder Approaches in the Development of Constructive Heterocycles and Functionalized Materials: A Review. Top Curr Chem (Z) 380, 43 (2022). https://doi.org/10.1007/s41061-022-00398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00398-2

Keywords

Navigation