Skip to main content
Log in

Recent Advances in Clusteroluminescence

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Clusteroluminescence is a phenomenon whereby the aggregation or clustering of non-conjugated electron-rich units leads to the emission of light at long wavelengths. This phenomenon was first discovered in poly(amido amine) (PAMAM) dendrimers. In recent years, clusteroluminescence has attracted growing research interest and its photophysical properties and mechanism have been thoroughly studied. In this review, we first briefly introduce the development of different types of clusteroluminogens. Then we highlight recent developments in clusteroluminescence, including mechanistic studies, the disclosure of room-temperature phosphorescence, and the extension of emission to the longer-wavelength region. Lastly, we demonstrate a few applications in various fields. With advantages such as being earth-abundant, biocompatible and biodegradable, clusteroluminogens are envisioned to be commonplace in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Stokes GG (1854) On the change of refrangibility of light. Abstr Pap Commun R Soc Lond 6:195–200

    Google Scholar 

  2. Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 18:1740–1741

    Google Scholar 

  3. Zhang H, Zhao Z, Turley AT, Wang L, McGonigal PR, Tu Y, Li Y, Wang Z, Kwok RTK, Lam JWY, Tang BZ (2020) Aggregate science: from structures to properties. Adv Mater 32(36):2001457

    CAS  Google Scholar 

  4. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev 115(21):11718–11940

    CAS  PubMed  Google Scholar 

  5. Tomalia DA, Klajnert-Maculewicz B, Johnson KAM, Brinkman HF, Janaszewska A, Hedstrand DM (2019) Non-traditional intrinsic luminescence: inexplicable blue fluorescence observed for dendrimers, macromolecules and small molecular structures lacking traditional/conventional luminophores. Prog Polym Sci 90:35–117

    CAS  Google Scholar 

  6. Zhang H, Zhao Z, McGonigal PR, Ye R, Liu S, Lam JWY, Kwok RTK, Yuan WZ, Xie J, Rogach AL, Tang BZ (2020) Clusterization-triggered emission: uncommon luminescence from common materials. Mater Today 32:275–292

    CAS  Google Scholar 

  7. He B, Zhang J, Zhang J, Zhang H (2020) Clusteroluminescence from cluster excitons in small heterocyclics free of aromatic rings. ChemRxiv. https://doi.org/10.26434/chemrxiv.13200491.v1

    Article  Google Scholar 

  8. Wang Y, Zhao Z, Yuan WZ (2020) Intrinsic luminescence from nonaromatic biomolecules. ChemPlusChem 85(5):1065–1080

    CAS  PubMed  Google Scholar 

  9. Halpern AM (1970) The vapor state emission from a saturated amine. Chem Phys Lett 6(4):296–298

    CAS  Google Scholar 

  10. Fan Y, Fan Y, Wang Y, Ma J (2007) Unexpected fluorescence emission of poly(α, β-L-malic acid) in aqueous medium. J Appl Polym Sci 106(3):1640–1647

    CAS  Google Scholar 

  11. Wang D, Imae T (2004) Fluorescence emission from dendrimers and its PH dependence. J Am Chem Soc 126(41):13204–13205

    CAS  PubMed  Google Scholar 

  12. Lee WI, Bae Y, Bard AJ (2004) Strong blue photoluminescence and ECL from OH-terminated PAMAM dendrimers in the absence of gold nanoparticles. J Am Chem Soc 126(27):8358–8359

    CAS  PubMed  Google Scholar 

  13. Larson CL, Tucker SA (2001) Intrinsic fluorescence of carboxylate-terminated polyamido amine dendrimers. Appl Spectrosc 55(6):679–683

    CAS  Google Scholar 

  14. Zhen S, Mao J-C, Chen L, Ding S, Luo W, Zhou X-S, Qin A, Zhao Z, Tang BZ (2018) Remarkable multichannel conductance of novel single-molecule wires built on through-space conjugated hexaphenylbenzene. Nano Lett 18(7):4200–4205

    CAS  PubMed  Google Scholar 

  15. Joo Y, Agarkar V, Sung SH, Savoie BM, Boudouris BW, Zhang H, Zheng X, Kwok RTK, Wang J, Leung NLC, Shi L, Sun JZ, Tang Z, Lam JWY, Qin A, Tang BZ (2018) A nonconjugated radical polymer glass with high electrical conductivity. Science 359:1391–1395

    CAS  PubMed  Google Scholar 

  16. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4(5):899–903

    CAS  Google Scholar 

  17. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    CAS  PubMed  Google Scholar 

  18. Yanari SS, Bovey FA, Lumry R (1963) Fluorescence of styrene homopolymers and copolymers. Nature 200(4903):242–244

    CAS  Google Scholar 

  19. Vallan L, Urriolabeitia EP, Ruipérez F, Matxain JM, Canton-Vitoria R, Tagmatarchis N, Benito AM, Maser WK (2018) Supramolecular-enhanced charge transfer within entangled polyamide chains as the origin of the universal blue fluorescence of polymer carbon dots. J Am Chem Soc 140(40):12862–12869

    CAS  PubMed  Google Scholar 

  20. Zheng J, Petty JT, Dickson RM (2003) High quantum yield blue emission from water-soluble Au8 nanodots. J Am Chem Soc 125(26):7780–7781

    CAS  PubMed  Google Scholar 

  21. Cao L, Yang W, Wang C, Fu S (2007) Synthesis and striking fluorescence properties of hyperbranched poly(amido amine). J Macromol Sci Part A Pure Appl Chem 44(4):417–424

    CAS  Google Scholar 

  22. Wang D, Imae T, Miki M (2007) Fluorescence emission from PAMAM and PPI dendrimers. J Colloid Interface Sci 306(2):222–227

    CAS  PubMed  Google Scholar 

  23. Wu D, Liu Y, He C, Goh SH (2005) Blue photoluminescence from hyperbranched poly(amino ester)s. Macromolecules 38(24):9906–9909

    CAS  Google Scholar 

  24. Fernández L, Sigal E, Otero L, Silber JJ, Santo M (2011) Solubility improvement of an anthelmintic benzimidazole carbamate by association with dendrimers. Braz J Chem Eng 28:679–689

    Google Scholar 

  25. Homchaudhuri L, Swaminathan R (2001) Novel absorption and fluorescence characteristics of l-lysine. Chem Lett 8:844–845

    Google Scholar 

  26. Al-Jamal KT, Ruenraroengsak P, Hartell N, Florence AT (2006) An intrinsically fluorescent dendrimer as a nanoprobe of cell transport. J Drug Target 14(6):405–412

    CAS  PubMed  Google Scholar 

  27. Ellis B, Brignola P, Brashear RL, Thomas R, Dickerson SH, Dickson HD, Kelly H, Gaul M, Griffin RJ, Hassell AM, Keith B, Mullin R, Petrov KG, Reno MJ, Rusnak DW, Tadepalli SM, Ulrich JC, Craig D, Vanderwall DE, Waterson AG, Williams JD, White WL, Uehling DE, Pompa PP, Maruccio G, Della A, Sabella S, Tamburro AM, Laureana L, Pompa PP, Maruccio G, Torre X, Della A, Sabella S, Tamburro AM, Cingolani R, Rinaldi R (2007) Charge transport and intrinsic fluorescence in amyloid-like fibrils. Proc Natl Acad Sci USA 104(46):18019–18024

    Google Scholar 

  28. Ye R, Liu Y, Zhang H, Su H, Zhang Y, Xu L, Hu R, Kwok RTK, Wong KS, Lam JWY, Goddard WA, Tang BZ (2017) Non-conventional fluorescent biogenic and synthetic polymers without aromatic rings. Polym Chem 8(10):1722–1727

    CAS  Google Scholar 

  29. Caminade AM, Yan D, Smith DK (2015) Dendrimers and hyperbranched polymers. Chem Soc Rev 44:3870–3873

    CAS  PubMed  Google Scholar 

  30. Sun M, Hong CY, Pan CY (2012) A unique aliphatic tertiary amine chromophore: fluorescence, polymer structure, and application in cell imaging. J Am Chem Soc 134(51):20581–20584

    CAS  PubMed  Google Scholar 

  31. Restani RB, Morgado PI, Ribeiro MP, Correia IJ, Aguiar-Ricardo A, Bonifácio VDB (2012) Biocompatible polyurea dendrimers with PH-dependent fluorescence. Angew Chem 124(21):5252–5255

    Google Scholar 

  32. Lu H, Feng L, Li S, Zhang J, Lu H, Feng S (2015) Unexpected strong blue photoluminescence produced from the aggregation of unconventional chromophores in novel siloxane-poly(amidoamine) dendrimers. Macromolecules 48(3):476–482

    CAS  Google Scholar 

  33. Pastor-Pérez L, Chen Y, Shen Z, Lahoz A, Stiriba SE (2007) Unprecedented blue intrinsic photoluminescence from hyperbranched and linear polyethylenimines: polymer architectures and PH-effects. Macromol Rapid Commun 28(13):1404–1409

    Google Scholar 

  34. Wang R, Yuan W, Zhu X (2015) Aggregation-induced emission of non-conjugated poly(amido amine)s: discovering, luminescent mechanism understanding and bioapplication. Chin J Polym Sci (English Ed) 33(5):680–687

    CAS  Google Scholar 

  35. Zhou Q, Cao B, Zhu C, Xu S, Gong Y, Yuan WZ, Zhang Y (2016) Clustering-triggered emission of nonconjugated polyacrylonitrile. Small 12(47):6586–6592

    CAS  PubMed  Google Scholar 

  36. Wang Y, Bin X, Chen X, Zheng S, Zhang Y, Yuan WZ (2018) Emission and emissive mechanism of nonaromatic oxygen clusters. Macromol Rapid Commun 39(21):1–6

    Google Scholar 

  37. Lin SY, Wu TH, Jao YC, Liu CP, Lin HY, Lo LW, Yang CS (2011) Unraveling the photoluminescence puzzle of PAMAM dendrimers. Chem A Eur J 17(26):7158–7161. https://doi.org/10.1002/chem.201100620

    Article  CAS  Google Scholar 

  38. Zhang Z, Li D, Jiang W, Wang Z (2018) The electron density delocalization of hydrogen bond systems. Adv Phys X 3(1):298–315

    Google Scholar 

  39. Wang B, Xin M, Dai X, Song R, Meng Y, Han J, Jiang W, Wang Z, Zhang R (2015) Electronic delocalization in small water rings. Phys Chem Chem Phys 17(5):2987–2990

    CAS  PubMed  Google Scholar 

  40. Wang L, Fried SD, Boxer SG, Markland TE (2014) Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site. Proc Natl Acad Sci USA 111(52):18454–18459

    CAS  PubMed  Google Scholar 

  41. Grisanti L, Pinotsi D, Gebauer R, Kaminski Schierle GS, Hassanali AA (2017) A computational study on how structure influences the optical properties in model crystal structures of amyloid fibrils. Phys Chem Chem Phys 19(5):4030–4040

    CAS  PubMed  Google Scholar 

  42. Pinotsi D, Grisanti L, Mahou P, Gebauer R, Kaminski CF, Hassanali A, Kaminski Schierle GS (2016) Proton transfer and structure-specific fluorescence in hydrogen bond-rich protein structures. J Am Chem Soc 138(9):3046–3057

    CAS  PubMed  Google Scholar 

  43. Zhao Z, Zhang H, Lam JWY, Tang BZ (2020) Aggregation-induced emission: new vistas at the aggregate level. Angew Chem 20:20

    Google Scholar 

  44. Wang Q, Dou X, Chen X, Zhao Z, Wang S, Wang Y, Sui K, Tan Y, Gong Y, Zhang Y, Yuan WZ (2019) Reevaluating protein photoluminescence: remarkable visible luminescence upon concentration and insight into the emission mechanism. Angew Chem Int Ed 58(36):12667–12673

    CAS  Google Scholar 

  45. Dou X, Zhou Q, Chen X, Tan Y, He X, Lu P, Sui K, Tang BZ, Zhang Y, Yuan WZ (2018) Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate. Biomacromol 19(6):2014–2022

    CAS  Google Scholar 

  46. Zhou Q, Wang Z, Dou X, Wang Y, Liu S, Zhang Y, Yuan WZ (2019) Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers. Mater Chem Front 3(2):257–264

    CAS  Google Scholar 

  47. Chen X, Liu X, Lei J, Xu L, Zhao Z, Kausar F, Xie X, Zhu X, Zhang Y, Yuan WZ (2018) Synthesis, clustering-triggered emission, explosive detection and cell imaging of nonaromatic polyurethanes. Mol Syst Des Eng 3(2):364–375

    CAS  Google Scholar 

  48. Zhao Z, Chen X, Wang Q, Yang T, Zhang Y, Yuan WZ (2019) Sulphur-containing nonaromatic polymers: clustering-triggered emission and luminescence regulation by oxidation. Polym Chem 10(26):3639–3646

    CAS  Google Scholar 

  49. Eftink MR, Selva TJ, Wasylewski Z (1987) Studies of the efficiency and mechanism of fluorescence quenching reactions using acrylamide and succinimide as quenchers. Photochem Photobiol 46(1):23–30

    CAS  Google Scholar 

  50. Yan J, Zheng B, Pan D, Yang R, Xu Y, Wang L, Yang M (2015) Unexpected fluorescence from polymers containing dithio/amino-succinimides. Polym Chem 6(34):6133–6139

    CAS  Google Scholar 

  51. Wang Y, Tang S, Wen Y, Zheng S, Yang B, Yuan WZ (2020) Nonconventional luminophores with unprecedented efficiencies and color-tunable afterglows. Mater Horizons 7(8):2105–2112

    CAS  Google Scholar 

  52. Zhao E, Lam JWY, Meng L, Hong Y, Deng H, Bai G, Huang X, Hao J, Tang BZ (2015) Poly[(maleic anhydride)-alt-(vinyl acetate)]: a pure oxygenic nonconjugated macromolecule with strong light emission and solvatochromic effect. Macromolecules 48(1):64–71

    CAS  Google Scholar 

  53. Hu C, Guo Z, Ru Y, Song W, Liu Z, Zhang X, Qiao J (2018) A new family of photoluminescent polymers with dual chromophores. Macromol Rapid Commun 39(10):1–6

    Google Scholar 

  54. Zhou Q, Yang T, Zhong Z, Kausar F, Wang Z, Zhang Y, Yuan WZ (2020) A Clustering-triggered emission strategy for tunable multicolor persistent phosphorescence. Chem Sci 11(11):2926–2933

    CAS  Google Scholar 

  55. Teki Y (2020) Excited-state dynamics of non-luminescent and luminescent π-radicals. Chem A Eur J 26(5):980–996

    CAS  Google Scholar 

  56. Wang Z, Zou X, Xie Y, Zhang H, Hu L, Chan CCS (2020) A nonconjugated radical polymer with stable red luminescence in solid state. ChemRxiv. https://doi.org/10.26434/chemrxiv.12924200.v1

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hirayama F (1965) Intramolecular excimer formation. I. Diphenyl and triphenyl alkanes. J Chem Phys 42(9):3163–3171

    CAS  Google Scholar 

  58. Brown CJ, Farthing AC (1949) Preparation and structure of di-p-xylylene [2]. Nature 20:915–916

    Google Scholar 

  59. Zhang H, Zheng X, Xie N, He Z, Liu J, Leung NLC, Niu Y, Huang X, Wong KS, Kwok RTK, Sung HHY, Williams ID, Qin A, Lam JWY, Tang BZ (2017) Why do simple molecules with “isolated” phenyl rings emit visible light? J Am Chem Soc 139(45):16264–16272

    CAS  PubMed  Google Scholar 

  60. Han T, Deng H, Qiu Z, Zhao Z, Zhang H, Zou H, Leung NLC, Shan G, Elsegood MRJ, Lam JWY, Tang BZ (2018) Facile multicomponent polymerizations toward unconventional luminescent polymers with readily openable small heterocycles. J Am Chem Soc 140(16):5588–5598

    CAS  PubMed  Google Scholar 

  61. Chen L, Wang YH, He B, Nie H, Hu R, Huang F, Qin A, Zhou XS, Zhao Z, Tang BZ (2015) Multichannel conductance of folded single-molecule wires aided by through-space conjugation. Angew Chem Int Ed 54(14):4231–4235

    CAS  Google Scholar 

  62. Robb MJ, Li W, Gergely RCR, Matthews CC, White SR, Sottos NR, Moore JS (2016) A robust damage-reporting strategy for polymeric materials enabled by aggregation-induced emission. ACS Cent Sci 2(9):598–603

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bartholomew GP, Bazan GC (2001) Bichromophoric paracyclophanes: models for interchromophore delocalization. Acc Chem Res 34(1):30–39

    CAS  PubMed  Google Scholar 

  64. Zhang H, Du L, Wang L, Liu J, Wan Q, Kwok RTK, Lam JWY, Phillips DL, Tang BZ (2019) Visualization and manipulation of molecular motion in the solid state through photoinduced clusteroluminescence. J Phys Chem Lett 10(22):7077–7085

    CAS  PubMed  Google Scholar 

  65. Yang W, Pan CY, Luo MD, Bin ZH (2010) Fluorescent mannose-functionalized hyperbranched poly(amido amine)s: synthesis and interaction with E. coli. Biomacromol 11(7):1840–1846

    CAS  Google Scholar 

  66. Yang W, Pan CY, Liu XQ, Wang J (2011) Multiple functional hyperbranched poly(amido amine) nanoparticles: synthesis and application in cell imaging. Biomacromol 12(5):1523–1531

    CAS  Google Scholar 

  67. Qiu L, Zhu C, Chen H, Hu M, He W, Guo Z (2014) A turn-on fluorescent Fe3+ sensor derived from an anthracene-bearing bisdiene macrocycle and its intracellular imaging application. Chem Commun 50(35):4631–4634

    CAS  Google Scholar 

  68. Tao S, Lu S, Geng Y, Zhu S, Redfern SAT, Song Y, Feng T, Xu W, Yang B (2018) Design of metal-free polymer carbon dots: a new class of room-temperature phosphorescent materials. Angew Chem Int Ed 57:2393–2398

    CAS  Google Scholar 

  69. Zhen S, Mao JC, Chen L, Ding S, Luo W, Zhou XS, Qin A, Zhao Z, Tang BZ (2018) Remarkable multichannel conductance of novel single-molecule wires built on through-space conjugated hexaphenylbenzene. Nano Lett 18:4200–4205

    CAS  PubMed  Google Scholar 

  70. Li J, Shen P, Zhao Z, Tang BZ (2019) Through-space conjugation: a thriving alternative for optoelectronic materials. CCS Chem 1(2):181–196

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruquan Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, H., Li, S. et al. Recent Advances in Clusteroluminescence. Top Curr Chem (Z) 379, 14 (2021). https://doi.org/10.1007/s41061-021-00326-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-021-00326-w

Navigation