Skip to main content
Log in

A Temperature–Age Model For Prediction of Compressive Strength of Chemically Activated High Phosphorus Slag Content Cement

  • Technical Note
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Prediction of compressive strength by a proper model is a fast and cost-effective way for evaluating cement quality under various curing conditions. In this paper, a logarithmic model based on the results of an experimental work conducted to investigate the effects of curing time and temperature on the compressive strength development of chemically activated high phosphorus slag content cement has been presented. This model is in terms of curing time and temperature as independent variables and compressive strength as dependent variable. For this purpose, mortar specimens were prepared from 80 wt.% phosphorus slag, 14 wt.% Portland cement, and 6 wt.% compound chemical activator at Blaine fineness of 303 m2/kg. The specimens were cured in lime-saturated water under temperatures of 25, 45, 65, 85, and 100 °C in oven. The model has two adjustable parameters for various curing times and temperatures. Modeling has been done by applying dimensionless insight. The proposed model can efficiently predict the compressive strength of this type of high phosphorus slag cement with an average relative error of less than 4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

R :

Compressive strength (MPa).

R b :

The 28-day compressive strength of Portland cement (MPa).

t :

Curing time (day)

t b :

Curing time for nondimensionalization (= 28 day).

T :

Curing temperature (°C).

T a :

Ambient temperature (K).

T 0 :

Standard temperature (= 0 °C).

α :

The first parameter of the model.

β :

The second parameter of the model.

Γ :

Dimensionless compressive strength.

α g :

The generalized first parameter of the model.

β g :

The generalized second parameter of the model.

θ :

Dimensionless curing temperature.

δ :

Dimensionless curing time.

References

  1. Khurana S, Banerjee R, Gaitonde U (2002) Energy balance and cogeneration for a cement plant. Appl Therm Eng 22:485–494

    Article  Google Scholar 

  2. Hekal EE, Abo-El-Enein SA, El-Korashy SA, Megahed GM, El-Sayed TM (2013) Hydration characteristics of portland cement–electric arc furnace slag blends. HBRC J 9:118–124

    Article  Google Scholar 

  3. Palaniappan KA, Vasantha S, Prakasan SS, Prabhu S, GGBS as alternative to OPC in concrete as an environment pollution reduction approach (2013) Int J Eng Res Technol 6(2):190–195

    Google Scholar 

  4. Kumar S, Kumar R, Bandopadhyay A, Innovative methodologies for the utilization of wastes from metallurgical and allied industries. Resour, Conserv Recycl, 2006; 48, 301–314.

    Article  Google Scholar 

  5. Dongxu L, Xuenquan W, Jinlin S, Yujiang W (2000) The influence of compound admixtures on the properties of high-Content slag cement. Cem Concr Res 30:45–50

    Article  Google Scholar 

  6. Kumar S., Kumar R., Bandopadhyay A., Alex T.C., Ravi Kumar B., Das S.K., Mehrotra S.P. (2008)Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement. Cem Concr Compos, ; 30, 679–685.

    Article  Google Scholar 

  7. Xia C, Li Z, Kunhe F (2009) Anti-crack performance of phosphorus slag concrete. Wuhan Univ J Nat Sci 1(14):80–86

    Google Scholar 

  8. Xia C, Kunhe F, Huaquan Y, Hua P (2011) Hydration kinetics of phosphorous slag-cement paste.Wuhan Univ J Nat Sci 1(26):142–146

    Google Scholar 

  9. Lothenbach B, Scrivener K, Hooton R (2011) Supplementary cementitious materials. Cem Concr Res 41:1244–1256

    Article  Google Scholar 

  10. Scrivener K, Nonat A (2011) Hydration of cementitious materials, present and future. Cem Concr Res 41(7):651–665

    Article  Google Scholar 

  11. Allahverdi A, Shaverdi B, Najafi Kani E (2010) Influence of sodium oxide on properties of fresh and hardened paste of alkali-activated blast-furnace slag. Int J Civ Eng 8(4):304–314

    Google Scholar 

  12. Ben Haha M, Lothenbach B, Le Saout G, Winnefeld F (2012) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag-part II: effect of Al2O3. Cem Concr Res 42:74–83

    Article  Google Scholar 

  13. Chen L (2010) A multiple linear regression prediction of concrete compressive strength based on physical properties of electric arc furnace oxidizing slag. Int J Appl Sci Eng 2(7):153–158

    Google Scholar 

  14. Dongxu L, Xuenquan W, Jinlin S Yujiang W (2002) A blended cement containing blast furnace slag and phosphorous slag. J Wuhan Univ Technol 2(17):62–65

    Article  Google Scholar 

  15. Dong XL, Lin C, Zhong-zi X, Zhi-min L (2002) A blended cement containing blast furnace slag and phosphorous slag. J Wuhan Univ Technol 2(17):62–65

    Article  Google Scholar 

  16. Allahverdi A, Saffari M (2011) Chemical activation of phosphorous slag with a solid compound activator, In: Proceedings of 4th International Conference on non-traditional cements and concretes. Brno, Czech Republic 573–580

  17. Allahverdi A, Rahmani A (2009) Chemical activation of natural pozzolan with a solid compound activator. Cem Wapno Beton 4:205–213

    Google Scholar 

  18. Allahverdi A, Ghorbani J (2006) Chemical activation and set acceleration of lime-natural pozzolan cement. Ceram Silik 50:193–199

    Google Scholar 

  19. Tepecik A, Altin Z, Erturan S (2009) Modeling compressive strength of standard cem-i 42.5 cement produced in Turkey with stepwise regression method. J Chem Soc Pak 2(31):214–220

    Google Scholar 

  20. Chopra P, Sharma RK, Kumar M (2014) Regression models for the prediction of compressive strength of concrete with & without fly ash. Int J Latest Trends Eng Technol 4(3):400–406

    Google Scholar 

  21. Iqbal Khan M (2009) Analytical model for the strength prediction of hpc consisting of cementitious composites Archit Civ Eng Environ 1:89–96

    Google Scholar 

  22. Eswari S, Raghunath PN, Kothandaraman S (2011) Regression modeling for strength and toughness evaluation of hybrid fibre reinforced concrete, ARPN J Eng Appl Sci 5 (6), 1–8

    Google Scholar 

  23. Onal O, Oztutk AU (2010) Artificial neural network application on microstructure-compressive strength relationship of cement mortar. Adv Eng Software 41:165–169

    Article  MATH  Google Scholar 

  24. Akkurt S, Ozdemir S, Tayfur G, Akyol B (2003) The use of GA-ANNs in the modeling of compressive strength of cement mortar. Cem Concr Res 33:973–979

    Article  Google Scholar 

  25. Saridemir M (2009) Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks. Adv Eng Softw 40:350–355

    Article  MATH  Google Scholar 

  26. Oztas A, Pala M, Eozbay E, Kanca E, Cag Iar N, Asghar M (2006) Prediction the compressive strength and slump of high strength concrete using neural network. Constr Build Mater 20:769–775

    Article  Google Scholar 

  27. Saridemir M (2010) Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash. Constr Build Mater 24:1911–1919

    Article  Google Scholar 

  28. Ahmadi M, Naderpour H, Kheyroddin A, ANN model for predicting the compressive strength of circular steel-confined concrete., Int J Civ Eng. doi:10.1007/s40999-016-0096-0

  29. Tarighat A (2012) Stochastic modeling and calibration of chloride content profile in concrete based on limited available data. Int J Civ Eng 4(10):309–316

    Google Scholar 

  30. Kenai S., Bhalerao K.D., Soboyejo A.B.O., Soboyejo W.O. (2006) A stochastic model for strength of limestone concrete, .

  31. Christensen P.T., Stochastic modeling of the diffusion coefficient for concrete, In: Proceedings of IFIP Working Conference, Osaka, Japan, 2002

  32. Hariharan AR, Santhi AS, Mohan Ganesh G (2015) Statistical model to predict the mechanical properties of binary and ternary blended concrete using regression analysis. Int J Civ Eng Trans A 13(3):331–340

    Google Scholar 

  33. Silvestri S, Gasparini G, Trombetti T, Ceccoli C, Statistical analysis towards the identification of accurate probability distribution models for the compressive strength of concrete, In: Proceedings of the 14th World Conference on Earthquake Engineering. Beijing, China, 2008

  34. Chopra P, Sharma RK, Kumar M (2013) Ridge regression for the prediction of compressive strength of concrete. Int J Innov Eng Technol 3(2):106–111

    Google Scholar 

  35. Allahverdi A, Mahinroosta M (2014) A model for prediction of compressive strength of chemically activated high phosphorous slag content cement. Int J Civ Eng Trans A 4(12):481–487

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Allahverdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allahverdi, A., Mahinroosta, M. & Pilehvar, S. A Temperature–Age Model For Prediction of Compressive Strength of Chemically Activated High Phosphorus Slag Content Cement. Int J Civ Eng 15, 839–847 (2017). https://doi.org/10.1007/s40999-017-0196-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40999-017-0196-5

Keywords

Navigation