Skip to main content
Log in

An Efficient Algorithm for Solving the Fractional Hepatitis B Treatment Model Using Generalized Bessel Polynomial

  • Research Paper
  • Published:
Iranian Journal of Science Aims and scope Submit manuscript

Abstract

Hepatitis B is the most common serious liver infection in the world. The cause of this infection is hepatitis B virus (HBV) that attacks liver cells and leads to liver injury. This work aims to compute an approximate solution of the fractional order HBV epidemic model (F-HBV-M) by the use of an optimization method on the base of a new basis function, generalized Bessel polynomials (GBPs). The model is first formulated and then generalized using the Caputo derivative. The method provides the solution in the form of the GBPs. To solve the model, the method of Lagrange multipliers is coupled with the GBPs. Analyzing model convergence, we finally provide accurate numerical and graphical descriptions for our F-HBV-M model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  • Abdollahi Z, Mohseni Moghadam M, Saeedi H, Ebadi MJ (2021) A computational approach for solving fractional Volterra integral equations based on two dimensional Haar wavelet method. Int J Comput Math. https://doi.org/10.1080/00207160.2021.1983549

    Article  MATH  Google Scholar 

  • Aguilar JFG, Garcia JR, Alvarado JB, Guia M (2012) Mathematical modelling of the mass-spring-damper system- A fractional calculus approach. Acta Universitaria 22(5):5–11

    Article  Google Scholar 

  • Avazzadeh Z, Hassani H, Ebadi MJ, Agarwal P, Poursadeghfard M, Naraghirad E (2023) Optimal approximation of fractional order brain tumor model using generalized Laguerre polynomials. Iran J Sci Technol Trans Sci 47:501–513

    Article  MathSciNet  Google Scholar 

  • Avazzadeh Z, Hassani H, Agarwal P, Mehrabi S, Ebadi MJ, Dahaghin MSh (2023) An optimization method for studying fractional-order tuberculosis disease model via generalized Laguerre polynomials. Soft Comput 27:9519–9531

    Article  Google Scholar 

  • Bavi O, Hosseininia M, Heydari MH, Bavi N (2022) SARS-CoV-2 rate of spread in and across tissue, groundwater and soil: a meshless algorithm for the fractional diffusion equation. Eng Anal Boundary Elem 138:108–117

    Article  MathSciNet  MATH  Google Scholar 

  • Bavi O, Hosseininia M, Heydari MH (2023) A mathematical model for precise predicting microbial propagation based on solving variable-order fractional diffusion equation. Math Methods in the Appl Sci. https://doi.org/10.1002/mma.9501

    Article  MathSciNet  Google Scholar 

  • Bavi O, Hosseininia M, Hajishamsaei M, Heydari MH (2023) Glioblastoma multiforme growth prediction using a Proliferation-Invasion model based on nonlinear time-fractional 2D diffusion equation. Chaos, Solitons Fractals 170:113393. https://doi.org/10.1016/j.chaos.2023.113393

    Article  MathSciNet  Google Scholar 

  • Danane J, Meskaf A, Allali K (2018) Optimal control of a delayed hepatitis B viral infection model with HBV DNA-containing capsids and CTL immune response. Opt Control Appl and Methods 39(3):1262–1272

    Article  MathSciNet  MATH  Google Scholar 

  • Danane J, Allali K, Hammouch Z (2020) Mathematical analysis of a fractional differential model of HBV infection with antibody immune response. Chaos, Solitons Fractals 136:109787. https://doi.org/10.1016/j.chaos.2020.109787

    Article  MathSciNet  MATH  Google Scholar 

  • Datta R, Dey R, Bhattacharya B, Saravanakumar R, Kwon O-M (2020) Stability and stabilization of T-S fuzzy systems with variable delays via new Bessel-Legendre polynomial based relaxed integral inequality. Inf Sci 522:99–123

    Article  MathSciNet  MATH  Google Scholar 

  • Diethelm K (2013) A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dyn 71:613–619

    Article  MathSciNet  Google Scholar 

  • European Association for the Study of the Liver (2017) EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J Hepatol 67(2):370–398

    Article  Google Scholar 

  • Gupta PK, Singh J, Rai KN, Rai SK (2013) Solution of the heat transfer problem in tissues during hyperthermia by finite difference-decomposition method. Appl Math Comput 219:6882–6892

    MathSciNet  MATH  Google Scholar 

  • Hajishafieiha J, Abbasbandy S (2023) Numerical solution of two-dimensional inverse time-fractional diffusion problem with non-local boundary condition using a-polynomials. J Appl Math Comput 69:1945–1965

    Article  MathSciNet  MATH  Google Scholar 

  • Hassani H, Machado JAT, Avazzadeh Z, Safari E, Mehrabi S (2021) Optimal solution of the fractional order breast cancer competition model. Sci Rep 11:15622. https://doi.org/10.1038/s41598-021-94875-1

    Article  Google Scholar 

  • Hassani H, Tenreiro Machado JA, Avazzadeh Z (2019) An effective numerical method for solving nonlinear variable-order fractional functional boundary value problems through optimization technique. Nonlinear Dyn 97:2041–2054

    Article  MATH  Google Scholar 

  • Hassani H, Mehrabi S, Naraghirad E, Naghmachi M, Yüzbaşı S (2020) An Optimization Method Based on the Generalized Polynomials for a Model of HIV Infection of CD4\(^+\) T Cells. Iran J Sci Technol Trans Sci 44:407–416

    Article  MathSciNet  Google Scholar 

  • Hassani H, Avazzadeh Z, Tenreiro Machado J, A, (2020) Numerical approach for solving variable-order space-time fractional telegraph equation using transcendental Bernstein series. Eng Comput 36:867–878

  • Hassani H, Avazzadeh Z, Tenreiro Machado J, A, Agarwal P, Bakhtiar M, (2022) Optimal solution of a fractional HIV/AIDS epidemic mathematical model. J Comput Biol 29(3):276–291

  • Hendy AS, Zaky MA (2022) Graded mesh discretization for coupled system of nonlinear multi-term time-space fractional diffusion equations. Eng Comput 38:1351–1363

    Article  Google Scholar 

  • Hendy AS, Zaky MA, Van Bockstal K (2023) Theoretical and numerical aspects for the longtime behavior of nonlinear delay time Caputo fractional reaction-diffusion equations. Nonlinear Dyn 111:3525–3537

    Article  Google Scholar 

  • Hepatitis B. Available from: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b

  • Hoang MT (2022) Reliable approximations for a hepatitis B virus model by nonstandard numerical schemes. Math Comput Simulat 193:32–56

    Article  MathSciNet  MATH  Google Scholar 

  • Hou J, Wang G, Wang F, Cheng J, Ren H, Zhuang H et al (2017) Guideline of Prevention and Treatment for Chronic Hepatitis B (2nd Version). J Clin Transl Hepatol 5(4):297–318

    Article  Google Scholar 

  • Izadi M, Srivastava HM (2021) Numerical approximations to the nonlinear fractional-order Logistic population model with fractional-order Bessel and Legendre bases. Chaos, Solitons Fractals 145:110779. https://doi.org/10.1016/j.chaos.2021.110779

    Article  MathSciNet  MATH  Google Scholar 

  • Kang H, Zhang M, Wang R (2022) Numerical methods for Cauchy principal value integrals of oscillatory Bessel functions. J Comput Appl Math 410:114216. https://doi.org/10.1016/j.cam.2022.114216

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar P, Erturk VS (2020) The analysis of a time delay fractional COVID-19 model via Caputo type fractional derivative. Math Methods in the Appl Sci. https://doi.org/10.1002/mma.6935

    Article  MATH  Google Scholar 

  • Kumar S, Chauhan RP, Aly AA, Momani S, Hadid S (2022) A study on fractional HBV model through singular and non-singular derivatives. The Eur Phys J Special Topics. https://doi.org/10.1140/epjs/s11734-022-00460-6

    Article  Google Scholar 

  • Li Y, Chen Y, Podlubny I (2010) Stability of fractional-order non linear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput Math Appl 59:1810–1821

    Article  MathSciNet  MATH  Google Scholar 

  • Lobato FS, Lima WJ, Borges RA, Ap A, Cavalini VJ, Steffen J (2020) The solution of direct and inverse fractional advection-dispersion problems by using orthogonal collocation and differential evolution. Soft Comput 24:10389–10399

    Article  MATH  Google Scholar 

  • Lorenzo CF, Hartley TT (2000) Initialized fractional calculus. Int J Appl Math 3(3):249–265

    MathSciNet  MATH  Google Scholar 

  • Luzyanina T, Bocharov G (2014) Stochastic modeling of the impact of random forcing on persistent hepatitis B virus infection. Math Comput Simulat 96:54–65

    Article  MathSciNet  MATH  Google Scholar 

  • Mahamat G, Kenmoe S, Akazong EW, Ebogo-Belobo JT, Serge Mbaga D, Bowo-Ngandji A et al (2021) Global prevalence of hepatitis B virus serological markers among healthcare workers: a systematic review and meta-analysis. World J Hepatol 13(9):1190–1202

    Article  Google Scholar 

  • Maji C, Mukherjee D, Kesh D (2020) Study of a fractional-order model of chronic wasting disease. Math Methods Appl Sci 43(7):4669–4682

    MathSciNet  MATH  Google Scholar 

  • Maji C, Mukherjee D, Kesh D (2020) Study of a fractional-order model of chronic wasting disease. Math Methods Appl Sci 43(7):4669–4682

    MathSciNet  MATH  Google Scholar 

  • Manda E, Chirove F (2021) A theoretical model of chronic hepatitis B virus with suboptimal adherence and drug resistance. Math Methods Appl Sci 44(2):1298–1325

    Article  MathSciNet  MATH  Google Scholar 

  • Mehmood M, Hamid M, Ashraf S, Tian Z (2021) Galerkin time discretization for transmission dynamics of HBV with non-linear saturated incidence rate. Appl Math Comput 410:126481. https://doi.org/10.1016/j.amc.2021.126481

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (2002) Geometric and physical interpretation of fractional integration and fractional differentiation. Fract Calc Appl Anal 5(4):367–386

    MathSciNet  MATH  Google Scholar 

  • Radmanesh M, Ebadi MJ (2020) A local mesh-less collocation method for solving a class of time-dependent fractional integral equations: 2D fractional evolution equation. Eng Anal Boundary Elem 113:372–381

    Article  MathSciNet  MATH  Google Scholar 

  • Rihan FA, Arafa AA, Rakkiyappan R, Rajivganthi C, Xu Y (2021) Fractional-order delay differential equations for the dynamics of hepatitis C virus infection with IFN-\(\alpha \) treatment. Alex Eng J 60:4761–4774

    Article  Google Scholar 

  • Roohi R, Heydari MH, Bavi O, Emdad H (2021) Chebyshev polynomials for generalized Couette flow of fractional Jeffrey nanofluid subjected to several thermochemical effects. Eng Comput 37(1):579–595

    Article  Google Scholar 

  • Rouzegar J, Vazirzadeh M, Heydari MH (2020) A fractional viscoelastic model for vibrational analysis of thin plate excited by supports movement. Mech Res Commun 110:103618. https://doi.org/10.1016/j.mechrescom.2020.103618

    Article  Google Scholar 

  • Salazar SJC, Sagar RP (2018) Numerical calculation of the Spherical Bessel Transform from Gaussian quadrature in the complex-plane. Comput Theor Chem 1143:43–51

    Article  Google Scholar 

  • Shangerganesh L, Nyamoradi N, Sathishkumar G, Karthikeyan S (2019) Finite-time blow-up of solutions to a cancer invasion mathematical model with haptotaxis effects. Comput Math Appl 77(8):2242–2254

    Article  MathSciNet  MATH  Google Scholar 

  • Sun H, Chen W, Wei H, Chen Y (2011) A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur Phys J Spec Top 193:185–192

    Article  Google Scholar 

  • Thuener J (2017) Hepatitis A and B Infections. Prim Care 44(4):621–629

    Article  Google Scholar 

  • Ullah S, Khan MA, Gómez-Aguilar JF (2019) Mathematical formulation of hepatitis B virus with optimal control analysis. Opt Control Appl and Methods 40(3):529–544

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Wu X, Kuniya T (2022) Analysis of a diffusive HBV model with logistic proliferation and non-cytopathic antiviral mechanisms. Commun Nonlinear Sci Num Sim 106:106110. https://doi.org/10.1016/j.cnsns.2021.106110

    Article  MathSciNet  MATH  Google Scholar 

  • Weusten J, Drimmelen HV, Vermeulen M, Lelie N (2017) A mathematical model for estimating residual transmission risk of occult hepatitis B virus infection with different blood safety scenarios. Transfusion 57(3):841–849

    Article  Google Scholar 

  • Yang SL, Qiao ZK (2011) The Bessel numbers and Bessel matrices. J Math Res Exp 31:627–636

    MathSciNet  MATH  Google Scholar 

  • Yüzbaşı S (2013) Numerical solution of the Bagley-Torvik equation by the Bessel collocation method. Math Methods in the Appl Sci 36(3):300–312

    Article  MathSciNet  MATH  Google Scholar 

  • Yüzbaşı S (2015) A collocation method based on the Bessel functions of the first kind for singular perturbated differential equations and residual correction. Math Methods Appl Sci 38(14):3033–3042

    Article  MathSciNet  MATH  Google Scholar 

  • Yüzbaşı S, Şahin N, Sezer M (2011) Numerical solutions of systems of linear Fredholm integro-differential equations with Bessel polynomial bases. Comput Math Appl 61(10):3079–3096

    Article  MathSciNet  MATH  Google Scholar 

  • Yüzbaşı S, Şahin N, Sezer M (2012) A Bessel collocation method for numerical solution of generalized pantograph equations. Numer Methods Partial Diff Equ 28(4):1105–1123

  • Zaky MA (2018) A Legendre collocation method for distributed-order fractional optimal control problems. Nonlinear Dyn 91:2667–2681

    Article  MATH  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to each part of this work.

Corresponding author

Correspondence to H. Hassani.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avazzadeh, Z., Hassani, H., Eshkaftaki, A.B. et al. An Efficient Algorithm for Solving the Fractional Hepatitis B Treatment Model Using Generalized Bessel Polynomial. Iran J Sci 47, 1649–1664 (2023). https://doi.org/10.1007/s40995-023-01521-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-023-01521-8

Keywords

Mathematics Subject Classification

Navigation