Skip to main content
Log in

Compact Stars of Emending Class One in f(T) Gravity

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

In this paper, we study the spherically symmetric anisotropic compact stars of emending class one in f(T) (where T being the torsion of the spacetime) gravity. For this purpose, we have used a particular form of the metric functions to solve the modified equation of motion in f(T) gravity for static anisotropic fluid source. The constructed models represent the class of anisotropic stars like \(SAX J 1808.4-3658 (SS1)\), \(Her X - 1, Vela X-12, PSR J1614-2230\) and \(Cen X -3\). We have calculated the physical parameters of the stars such as pressure, density, regularity and anisotropy. We have also discussed the stability of formulated models and proved that in f(T) theory of gravity (with diagonal tetrad) these models of the stars are unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbas G, Nazeer S, Meraj MA (2014) Cylindrically symmetric models of anisotropic compact stars. Astrophys Space Sci 354:449

    Article  Google Scholar 

  • Abbas G, Kanwal A, Zubair M (2015a) Anisotropic compact stars in f(T) gravity. Astrophys Space Sci 357:109

    Article  Google Scholar 

  • Abbas G et al (2015b) Anisotropic compact stars in f(G) gravity. Astrophys Space Sci 357:158

    Article  Google Scholar 

  • Abbas G, Qaisar S, Meraj MA (2015c) Anisotropic strange quintessence stars in f(T) gravity. Astrophys Space Sci 357:156

    Article  Google Scholar 

  • Abbas G, Qaisar S, Jawad A (2015d) Strange stars in f(T) gravity with MIT bag model. Astrophys Space Sci 359:67

    Article  Google Scholar 

  • Abbas G, Zubair M, Mustafa G (2015e) Anisotropic strange quintessence stars in f(R) gravity. Astrophys Space Sci 358:26

    Article  Google Scholar 

  • Aslam A, Jamil M, Momeni D, Myrzakulov R (2013) Noether gauge symmetry of modified teleparallel gravity minimally coupled with a canonical scalar field. Can J Phys 91:93

    Article  Google Scholar 

  • Bamba K, Jamil M, Momeni D, Myrzakulov R (2013) Generalized second law of thermodynamics in f(T) gravity with entropy corrections. Astrophys Space Sci 344:259

    Article  MATH  Google Scholar 

  • Bengochea GR, Ferraro R (2009) Dark torsion as the cosmic speed-up. Phys Rev D 79:124019

    Article  Google Scholar 

  • Bennett CL et al (2003) First year Wilkinson Anisotropy Probe (WMAP) observations: preliminary maps and basic results. Astrophys J Suppl 148:1

    Article  Google Scholar 

  • Bhar P, Maurya SK, Gupta YK, Manna T (2016) Modelling of anisotropic compact stars of embedding class one. Eur Phys J A 52:312

    Article  Google Scholar 

  • Cai RG, Gong YG, Wang B (2006) Super-acceleration on the brane through energy flow from the bulk. JCAP 0603:006

    Article  Google Scholar 

  • Calcagni G (2009) Cosmology of the Lifshitz universe. JHEP 0909:112

    Article  MathSciNet  Google Scholar 

  • Caldwell RR (2002) A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys Lett B 545:23

    Article  Google Scholar 

  • Chattopadhyay S, Jawad A, Momeni D, Myrzakulov R (2014) Pilgrim dark energy in f(T, T G) cosmology. Astrophys Space Sci 353:279

    Article  Google Scholar 

  • De Felice A, Tsujikawa S (2010) f(R) theories. Living Rev Relativity 13:03

    Article  MATH  Google Scholar 

  • Dent JB, Dutta S, Saridakis EN (2011) f(T) gravity mimicking dynamical dark energy. Background and perturbation analysis. JCAP 1101:009

    Article  Google Scholar 

  • Einstein A (1928) Sitz Preuss. Akad Wiss p 217.

  • Feng B, Wang XL, Zhang XM (2005) Dark energy constraints from the cosmic age and supernova. Phys Lett B 607:35

    Article  Google Scholar 

  • Ferraro R, Fiorini F (2007) Modified teleparallel gravity: inflation without an inflaton. Phys Rev D 75:084031

    Article  MathSciNet  Google Scholar 

  • Hayashi K, Shirafuji T (1979) New general relativity. Phys Rev D 19:3524

    Article  MathSciNet  MATH  Google Scholar 

  • Hayashi K, Shirafuji T (1982) Addendum to new general relativity. Phys Rev D 19:3524

    Article  MATH  Google Scholar 

  • Herrera L (1992) Cracking of self-gravitating compact objects. Phys Lett A 165:206

    Article  Google Scholar 

  • Horava P (2009) Quantum gravity at a Lifshitz point. Phys Rev D 79:084008

    Article  MathSciNet  Google Scholar 

  • Houndjo MJS, Momeni D, Myrzakulov R (2012) Cylindrical solutions in modified f(T) gravity. Int J Mod Phys D 21:1250093

    Article  MathSciNet  MATH  Google Scholar 

  • Houndjo MJS, Momeni D, Myrzakulov R, Rodrigues ME (2015) Evaporation phenomena in f(T) gravity. Can J Phys 93:377

    Article  Google Scholar 

  • Hsu SDH (2004) Entropy bounds and dark energy. Phys Lett B 594:13

    Article  Google Scholar 

  • Huang QG, Li M (2004) The Holographic dark energy in a non-flat universe. JCAP 0408:013

    Article  MathSciNet  Google Scholar 

  • Ito M (2005) Holographic-dark-energy model with non-minimal coupling. Europhys Lett 71:712

    Article  Google Scholar 

  • Jamil M, Momeni D, Myrzakulov R (2012a) Attractor solutions in f(T) cosmology. Eur Phys J C 72:1959

    Article  Google Scholar 

  • Jamil M, Momeni D, Myrzakulov R (2012b) Stability of a non-minimally conformally coupled scalar field in F(T) cosmology. Eur Phys J C 72:2075

    Article  Google Scholar 

  • Jamil M, Momeni D, Myrzakulov R (2013c) Observational constraints on non-minimally coupled Galileon model. Eur Phys J C 73:2267

    Article  Google Scholar 

  • Jamil M, Momeni D, Myrzakulov R (2012d) Resolution of dark matter problem in f(T) gravity. Eur Phys J C 72:2122

    Article  Google Scholar 

  • Jamil M, Momeni D, Myrzakulov R (2012e) Noether symmetry of F(T) cosmology with quintessence and phantom scalar fields. Eur Phys J C 72:2137

    Article  Google Scholar 

  • Jamil M, Momeni D, Myrzakulov R (2013) Energy conditions in generalized teleparallel gravity models. Gen Relativ Gravit 45:263

    Article  MathSciNet  MATH  Google Scholar 

  • Jamil M, Yesmkhanova K, Momeni D, Myrzakulov R (2012) Phase space analysis of interacting dark energy in F(T) cosmology. Cent Eur J Phys 10:1065

    Google Scholar 

  • Jamil M, Momeni D, Myrzakulov R, Rudra P (2012) Statefinder analysis of f(T) cosmology. J Phys Soc Jp 81:114004

    Article  Google Scholar 

  • Jamil M, Momeni D, Myrzakulov R (2015) Warm intermediate inflation in F(T) gravity. Int J Theor Phys 54:1098

    Article  MathSciNet  MATH  Google Scholar 

  • Karmarkar KR (1948) Gravitational metrics of spherical symmetry and class one. Proc Ind Acad Sci A 27:56

    MathSciNet  Google Scholar 

  • Kiritsis E, Kofinas G (2009) Horava-Lifshitz Cosmology. Nucl Phys B 821:467

    Article  MathSciNet  MATH  Google Scholar 

  • Li M (2004) A model of holographic dark energy. Phys Lett B 603:1

    Article  Google Scholar 

  • Linder EV (2010) Einstein's other gravity and the acceleration of the universe. Phys Rev D 81:127301

    Article  Google Scholar 

  • Lu H, Mei J, Pope CN (2009) Solutions to Horava gravity. Phys Rev Lett 103:091301

    Article  MathSciNet  Google Scholar 

  • Momeni D, Myrzakulov R (2014) Cosmological reconstruction of f(T, T) gravity. Int J Geom Method Mod Phys D 11:1450077

    Article  MathSciNet  MATH  Google Scholar 

  • Myrzakulov (2011) Accelerating universe from F(T) gravity. Eur Phys J C 71:1752

    Article  Google Scholar 

  • Nojiri S, Odintsov SD (2005) Modified Gauss-Bonnet theory as gravitational alternative for dark energy. Phys Lett B 631:1

    Article  MathSciNet  MATH  Google Scholar 

  • Peebles PJ, Ratra B (2003) The cosmological constant and dark energy. Rev Mod Phys 75:559

    Article  MathSciNet  MATH  Google Scholar 

  • Perlmutter S et al (1999) Supernova cosmology project collaboration. Astrophys J 517:565

    Article  Google Scholar 

  • Ratra B, Peebles PJE (1988) Cosmological consequences of a rolling homogeneous scalar field. Phys Rev D 37:3406

    Article  Google Scholar 

  • Riess AG et al (1998) Supernova search team collaboration. Astron J 116:1009

    Article  Google Scholar 

  • Rodrigues ME, Houndjo MJS, Momeni D, Myrzakulov R (2013) Planer symmetry in f(T) gravity. Int J Mod Phys D 22:1350043

    Article  MATH  Google Scholar 

  • Saridakis EN (2010) Hořava–Lifshitz dark energy. Eur Phys J C 67:229

    Article  Google Scholar 

  • Sotiriou TP, Faraoni V (2010) f(R) theories of gravity. Rev Mod Phys 82:451

    Article  MATH  Google Scholar 

  • Tolman RC (1939) Static solutions of Einstein's field equations for spheres of fluid. Phys Rev 55:364

    Article  MATH  Google Scholar 

  • Tsujikawa S (2011) Dark energy: investigations and modeling. In: Matarrese S, Colpi M, Gorini V, Moschella U (eds) Dark matter and dark energy. A challenge for modern cosmology. Astrophysics and space science library, vol 370. Springer, Netherlands, pp 331–402

    Google Scholar 

  • Wetterich C (1988) Cosmology and the fate of dilatation symmetry. Nucl Phys B 302:668

    Article  Google Scholar 

  • Wu P, Yu H (2010a) The dynamical behavior of f(T) theory. Phys Lett B 692:176

    Article  MathSciNet  Google Scholar 

  • Wu P, Yu H (2010b) Observational constraints on f(T) theory. Phys Lett B 693:415

    Article  Google Scholar 

  • Yerzhanov KK, Myrzakul SR, Kulnazarov II, Myrzakulov R. Accelerating cosmology in F(T) gravity with scalar field. arXiv:1006.3879 (unpublished)

  • Yousaf Z, Bamba K, Bhatti MZ (2016a) Causes of irregular energy density in f (R, T) gravity. Phys Rev D 93:124048

    Article  MathSciNet  Google Scholar 

  • Yousaf Z, Bamba K, Bhatti MZ (2016b) The influence of modification of gravity on the dynamics of radiating spherical fluids. Phys Rev D 93:064059

    Article  Google Scholar 

  • Yousaf Z, Bhatti MZ (2016) Stability of compact stars in αR2 + βQ gravity. Mon Not Roy Astron Soc 458:1785

    Article  Google Scholar 

  • Zubair M, Abbas G (2016a) Some interior models of compact stars in f(R) gravity. Astrophys Space Sci 361:342

    Article  MathSciNet  Google Scholar 

  • Zubair M, Abbas G (2016b) Analytic models of anisotropic strange stars in f(T) gravity using off diagonal tetrad. Astrophys Space Sci 361:27

    Article  Google Scholar 

  • Zubair M, Abbas G, Noureen I (2016a) Possible formation of compact stars in f(R, T) gravity. Astrophys Space Sci 361:8

    Article  MathSciNet  Google Scholar 

  • Zubair M, Sardar IH, Rahaman F, Abbas G (2016b) Interior solutions of fluid sphere in f(R,T) gravity admitting conformal killing vectors. Astrophys Space Sci 361:238

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Abbas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, G., Qaisar, S., Javed, W. et al. Compact Stars of Emending Class One in f(T) Gravity. Iran J Sci Technol Trans Sci 42, 1659–1668 (2018). https://doi.org/10.1007/s40995-016-0144-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-016-0144-2

Keywords

Navigation