Skip to main content
Log in

Exact formulae for the fractional partition functions

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

The partition function p(n) has been a testing ground for applications of analytic number theory to combinatorics. In particular, Hardy and Ramanujan invented the “circle method” to estimate the size of p(n), which was later perfected by Rademacher who obtained an exact formula. Recently, Chan and Wang considered the fractional partition functions, defined for \(\alpha \in {\mathbb {Q}}\) by \(\sum _{n = 0}^\infty p_{\alpha }(n)x^n := \prod _{k=1}^\infty (1-x^k)^{-\alpha }\). In this paper we use the Rademacher circle method to find an exact formula for \(p_\alpha (n)\) and study its implications, including log-concavity and the higher-order generalizations (i.e., the Turán inequalities) that \(p_\alpha (n)\) satisfies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. All computations in this section were done with Wolfram Mathematica.

References

  1. Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory. Graduate Texts in Mathematics, 2nd edn. Springer, New York (1990)

    Book  Google Scholar 

  2. Bevilacqua, E., Chandran, K., Choi, Y.: Ramanujan Congruences for Fractional Partition Functions. Unpublished (2019)

  3. Bringmann, K., Folsom, A., Ono, K., Rolen, L.: Harmonic Maass Forms and Mock Modular Forms: Theory and Applications, vol. 64. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence (2017)

    Book  Google Scholar 

  4. Chan, H.H., Wang, L.: Fractional powers of the generating function for the partition function. Acta Arithmetica 187, 59–80 (2019)

    Article  MathSciNet  Google Scholar 

  5. Chen, W., Jia, D., Wang, L.: Higher order Turán inequalities for the partition function. Trans. Am. Math. Soc. (2018)

  6. Craven, T., Csordas, G.: Jensen polynomials and the Turán and Laguerre inequalities. Pac. J. Math. 136(2), 241–260 (1989)

    Article  Google Scholar 

  7. DeSalvo, S., Pak, I.: Log-concavity of the partition function. Ramanujan J. 38(1), 61–73 (2015)

    Article  MathSciNet  Google Scholar 

  8. Griffin, M., Ono, K., Rolen, L., Zagier, D.: Jensen polynomials for the Riemann zeta function and other sequences. Proc. Natl. Acad. Sci. USA 116(23), 11103–11110 (2019)

    Article  MathSciNet  Google Scholar 

  9. Hardy, G.H., Ramanujan, S.: Asymptotic formulæ in combinatory analysis. Proc. Lond. Math. Soc. 2(1), 75–115 (1918)

    Article  Google Scholar 

  10. Helfgott, H.A.: The ternary Goldbach conjecture is true. arXiv e-prints, page arXiv:1312.7748 (2013)

  11. Keith, W.J.: Restricted \(k\)-color partitions. Ramanujan J. 40(1), 71–92 (2016)

    Article  MathSciNet  Google Scholar 

  12. Larson, H., Wagner, I.: Hyperbolicity of the partition Jensen polynomials. Res. Number Theory 5(2), 19 (2019)

    Article  MathSciNet  Google Scholar 

  13. Nicolas, J.-L.: Sur les entiers \(n\) pour lesquels il y a beaucoup de groupes abéliens d’ordre \(n\). Ann. Insti. Fourier 28(4), 1–16 (1978)

    Article  Google Scholar 

  14. Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., B.V. Saunders, (eds.) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.23 of 2019-06-15.

  15. Paris, R.: An Inequality for the Bessel function \({J}_{\nu }(\nu x)\). SIAM J. Math. Anal. 15(1), 203–205 (1984)

    Article  MathSciNet  Google Scholar 

  16. Rademacher, H.: On the Partition Function \(p(n)\). Proc. Lond. Math. Soc. s2–43(1), 241–254 (1938)

    Article  Google Scholar 

  17. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1922)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ken Ono, Larry Rolen, and Ian Wagner for suggesting the problem and their guidance. The research was supported by the generosity of the Asa Griggs Candler Fund, the National Security Agency under grant H98230-19-1-0013, and the National Science Foundation under Grants 1557960 and 1849959.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Talvola.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iskander, J., Jain, V. & Talvola, V. Exact formulae for the fractional partition functions. Res. number theory 6, 20 (2020). https://doi.org/10.1007/s40993-020-00195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-020-00195-0

Keywords

Navigation