Skip to main content
Log in

Effects of Alternating Magnetic Field on the Hot Tearing Susceptibility and Microstructure of Al-5Cu Alloy

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The influence of alternating magnetic field on hot tearing susceptibility (HTS) and microstructure of Al-5Cu alloy were studied using hot tearing test system and differential thermal analysis test. The Clyne-Davies model was used to evaluate the HTS of the alloy quantitatively under different magnetic current intensities (0A, 5A, 10A, 15A). The experimental results show that the HTS and microstructure of Al-5Cu alloy can be affected by imposing the alternating magnetic field during alloy solidification. In the range of 0–10A, with the increase of alternating magnetic field current intensity, there is strong forced convection in the molten metallic pool under the action of electromagnetic force, which leads to the fragmentation of dendrites and the grains refinement, optimizes the feeding channels between grains and reduces the HTS of the alloy. When the alternating magnetic field intensity is 15A, the grains become coarser due to the thermal effect of electromagnetic field, resulting in the deterioration of the feeding channel and the increase of HTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. G.K. Sigworth, Inter. Metalcast. 15, 13–16 (2021). https://doi.org/10.1007/s40962-020-00475-6

    Article  CAS  Google Scholar 

  2. E. Elgallad, F. Samuel, A. Samuel et al., Inter. Metalcast. 3, 29–41 (2009). https://doi.org/10.1007/BF03355446

    Article  CAS  Google Scholar 

  3. D. Masnur, V. Malau, S. Suyitno, Inter. Metalcast. (2021). https://doi.org/10.1007/s40962-021-00598-4

    Article  Google Scholar 

  4. D. Weiss, B. Murphy, M.J. Thompson et al., Thermomagnetic processing of aluminum alloys during heat treatment. Inter. Metalcast. 15, 49–59 (2021). https://doi.org/10.1007/s40962-020-00460-z

    Article  CAS  Google Scholar 

  5. F. Dong, Y. Yi, C. Huang et al., Influence of cryogenic deformation on second-phase particles, grain structure and mechanical properties of Al–Cu–Mn Alloy. J. Alloy. Compd 827, 154300 (2020). https://doi.org/10.1016/j.jallcom.2020.154300

    Article  CAS  Google Scholar 

  6. Y. Zhou, P. Mao, Z. Zhou et al., J. Magnes. Alloy 8, 1176–1185 (2020). https://doi.org/10.1016/j.jma.2020.03.005

    Article  CAS  Google Scholar 

  7. M. Bellet, O. Cerri, M. Bobadilla et al., Metal. Mater. Trans. A 40, 2705–2717 (2009). https://doi.org/10.1007/s11661-009-9955-5

    Article  CAS  Google Scholar 

  8. Wei, Z., Zhou, Z., Liu. S. (2021) Inter Metalcast doi: https://doi.org/10.1007/s40962-021-00591-x

  9. C. Zhou, J. Xu, T. Fan, Influence of genetic factors on hot cracking tendency of Al−Cu alloy. China Foundry 2, 46–48 (1999)

    Google Scholar 

  10. H. Kamali, M. Emamy, A. Razaghian, Mater. Sci. Eng. A-Struct. 590, 161–167 (2014). https://doi.org/10.1016/j.msea.2013.10.032

    Article  CAS  Google Scholar 

  11. C. Tao, X. Yuan, J. Liu, Effect of La on hot cracking susceptibility of Al-Cu-Mg alloy. Mater. Res. Express 6, 105–112 (2019). https://doi.org/10.1088/2053-1591/ab41c8

    Article  CAS  Google Scholar 

  12. H. Liao, Y. Liu, C. Lu, Int. J. Cast. Metals Res. 28, 213–220 (2015). https://doi.org/10.1179/1743133615Y.0000000002

    Article  CAS  Google Scholar 

  13. J. Han, J. Wang, M. Zhang et al., Trans. Nonferrous Met. Soc. Chin. 30, 2311–2325 (2020). https://doi.org/10.1016/S1003-6326(20)65381

    Article  CAS  Google Scholar 

  14. A. Hamadellah, A. Bouayad, C. Gerometta, Hot tear characterization of Al-Cu-5Mg-Ti and Al-9Si casting alloys using an instrumented constrained six rods casting method. J. Master. Process. Tech. 224, 282–288 (2017). https://doi.org/10.1016/j.jmatprotec.2017.01.030

    Article  CAS  Google Scholar 

  15. Y. Zhou, P. Mao, Z. Wang et al., J. Mater. Process. Tech. 282, 116679 (2020)

    Article  CAS  Google Scholar 

  16. Y. Jia, X. Chen, Q. Le, Macro-physical field of large diameter magnesium alloy billet electromagnetic direct-chill casting: a comparative study. J. Magnes. Alloy. 8, 716–730 (2020). https://doi.org/10.1016/j.jma.2020.03.006

    Article  CAS  Google Scholar 

  17. M. Li, L.R. Cai, P.X. Liu, Adv. Mater. Res. 538–541, 1183–1186 (2012)

    Article  Google Scholar 

  18. Z. Chen, G. Gao, L. Zhang et al., China Foundry 66, 238–241 (2017)

    Google Scholar 

  19. C. Ban, J. Cui, Q. Ba et al., Mater. Rev. 5, 95–96 (2004)

    Google Scholar 

  20. B. Zhang, J. Cui, G. Lu, Mater. Sci. Eng. A. 355, 325–330 (2002). https://doi.org/10.1016/S0921-5093(03)00105-9

    Article  CAS  Google Scholar 

  21. X. Wang, J. Cui, Q. Zhu et al., Adv. Mater. Res. 97, 1012–1015 (2010)

    Article  Google Scholar 

  22. Z. Ning, Z. Xu, W. Liang, Chin. J. Nonferrous. Met. 7, 129–133 (1997)

    CAS  Google Scholar 

  23. X. Du, F. Wang, Z. Wang et al., Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab353a

    Article  Google Scholar 

  24. Z. Wang, Y. Huang, A. Srinivasan, Experimental and numerical analysis of hot tearing susceptibility for Mg-Y alloys. J. Mater. Sci. 49, 353–362 (2014). https://doi.org/10.1007/s10853-013-7712-z

    Article  CAS  Google Scholar 

  25. X. Du, F. Wang, Z. Wang et al., Acta. Metall. Sin. (English Letters) 33, 1259–1270 (2020). https://doi.org/10.1007/s40195-020-01033-z

    Article  CAS  Google Scholar 

  26. G. Zhang, Y. Wang, Z.J. Liu, Magnes. Alloy 7, 272–282 (2019). https://doi.org/10.1016/j.jma.2019.04.001

    Article  CAS  Google Scholar 

  27. H. Dong, F. Wang, Z. Wang et al., Mater. Res. Express 5, 3 (2018). https://doi.org/10.1088/2053-1591/aab2e5

    Article  CAS  Google Scholar 

  28. F. Leng, F. Wang, Z. Wang et al., Hot tearing behavior of Mg−4Zn−xSn−0.6Zr alloys. Inter. Metalcast. 15, 292–305 (2021). https://doi.org/10.1007/s40962-020-00464-9

    Article  CAS  Google Scholar 

  29. H. Yu, S. Liu, L. Zhou et al., Study on solidification behavior and hot tearing susceptibility of Mg-2xY-xNi alloys. Inter. Metalcast 15, 995–1005 (2020). https://doi.org/10.1007/s40962-020-00531-1

    Article  CAS  Google Scholar 

  30. S. Bai, F. Wang, Z. Wang et al., Effect of Ca content on hot tearing susceptibility of Mg-4Zn-xCa-0.3Zr (x = 0.5, 1, 1.5, 2) alloys. Inter Metalcast 15, 1298–1308 (2021). https://doi.org/10.1007/s40962-020-00553-9

    Article  CAS  Google Scholar 

  31. X. Li, S. Liu, Z. Liu et al., Influence of Nd on hot tearing susceptibility and mechanism of Mg-Zn-Y-Zr alloys. J. Mater. Eng. Perform. 29, 6714–6726 (2020). https://doi.org/10.1007/s11665-020-05144-7

    Article  CAS  Google Scholar 

  32. Y. Zhu, Y. Zhang, X. Zeng, Effects of Yttrium on microstructure and mechanical properties of hot-extruded Mg-Zn-Y-Zr alloys. Mater. Sci. Eng. A. 373, 320–327 (2004). https://doi.org/10.1016/j.msea.2004.02.007

    Article  CAS  Google Scholar 

  33. Z. Wang, Y. Huang, A. Srinivasan et al., Hot tearing susceptibility of binary Mg-Y alloy castings. Mater. Des. 47, 90 (2013). https://doi.org/10.1016/j.matdes.2012.12.044

    Article  CAS  Google Scholar 

  34. X. Li, Z. Guo, X. Zhao et al., Continuous casting of copper tube billets under rotating electromagnetic field. Mater. Sci. Eng. A. 460, 648–651 (2007). https://doi.org/10.1016/j.msea.2007.01.078

    Article  CAS  Google Scholar 

  35. L. Li, B. Xu, W. Tong, Directional growth behavior of α(Al) dendrites during concentration-gradient controlled solidification process in static magnetic field. Trans. Nonferrous Met. Soc. China 25, 2438–2445 (2015). https://doi.org/10.1016/S1003-6326(15)63860-2

    Article  CAS  Google Scholar 

  36. S. Li, K. Sadayappan, D. Apelian, Role of grain refinement in the hot tearing of cast Al-Cu alloy. Metal. Mater. Trans. B. 44, 614–623 (2013). https://doi.org/10.1007/s11663-013-9801-4

    Article  CAS  Google Scholar 

  37. D ’Elia, F., Ravindran, C., Sediako, D., et al., Hot tearing mechanisms of B206 aluminum–copper alloy. Mater. Design 64, 44–55 (2014). https://doi.org/10.1016/j.matdes.2014.07.024

    Article  CAS  Google Scholar 

  38. Y. Liu, L. Zhan, Q. Ma et al., Effects of alternating magnetic field aged on microstructure and mechanical properties of AA2219 aluminum alloy. J. Alloys. Compd. 647, 644–647 (2015). https://doi.org/10.1016/j.jallcom.2015.05.183

    Article  CAS  Google Scholar 

  39. Du, X., Wang, F., Wang, Z. et al. Effect of addition of minor amounts of Sb and Gd on Hot Tearing Susceptibility of Mg-5Al-3Ca alloy. J. Magnes. Alloy. (2021) http://creativecommons.org/licenses/by-nc-nd/4.0/.

  40. I. Farup, J.M. Drezet, M. Rappaz, In situ observation of hot tearing formation in succinonitrile-acetone. Acta Metall. 49, 1261 (2001)

    CAS  Google Scholar 

  41. Y. Yoshitake, K. Yamamoto, N. Sasaguri et al., Grain refinement of Al–2%Cu alloy using vibrating mold. Inter Metalcast 13, 553–560 (2019). https://doi.org/10.1007/s40962-018-0289-1

    Article  CAS  Google Scholar 

  42. J. Shavadia, Y. Zheng, N. Maleki et al., Effect of Zn addition on hot tearing behavior of Mg-0.5Ca-xZn alloys. Mater. Design 87, 157–170 (2015). https://doi.org/10.1016/j.matdes.2015.08.026

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from Innovation Talent Program in Sciences and Technologies for Young and Middle-aged Scientists of Shenyang (RC200414), Liaoning BaiQianWan Talents Program, Scientific research fund project of Liaoning Provincial Department of Education (LJGD2020008), Liaoning Revitalization Talents Program (XLYC1907007), High Level Innovation Team of Liaoning Province (XLYC1908006), Youth Project of Liaoning Education Department (Nos. LQGD2019002 and LJGD2019004), Department of Science and Technology of Liaoning Province: (Grant Number 2019-ZD-0210), Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (2019JH3/30100014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, M., Wang, F., Du, X. et al. Effects of Alternating Magnetic Field on the Hot Tearing Susceptibility and Microstructure of Al-5Cu Alloy. Inter Metalcast 17, 373–385 (2023). https://doi.org/10.1007/s40962-022-00781-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00781-1

Keywords

Navigation