Skip to main content

Advertisement

Log in

Investigation of the Short-term Effects of Heat Shock on Human Hamstring Tenocytes In Vitro

  • Original Research
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Tendons and ligaments are collagenous connective tissues involved in locomotion and stabilization of joints. These tissues possess relatively low cellularity and vascularity, resulting in long and potentially incomplete healing responses following injury. For sub-failure injuries such as strains and sprains, the common treatment is an implementation of rest, ice, compression, and elevation. This procedure relies on the tissue’s natural healing ability, leaving the tissue prone to possible re-injury and failure. As a potential aid in the healing process, we investigated the effects of thermal stress on human tenocytes in vitro. This method exploits the activity of heat shock proteins, which assist in cellular proliferation and protein assembly. Heat shock at 40, 44, and 48 °C was applied to human hamstring tenocytes for 5–20 min. Studies were performed to determine metabolic activity, proliferation, protein secretion, and gene expression of the cells shortly after heating. A scratch wound healing assay was performed to monitor migration of cells as they recovered from heat shock. The data showed increased cellular activity following 15 and 20 min of thermal conditioning at 44 and 48 °C. Protein secretion and expression of collagens types I and III and TGF-β1 suggest that the heat shock response of tenocytes is similar to that of natural wound healing. The results revealed different responses for different temperatures and different durations of heat shock. The scratch assay revealed that heat might hasten recovery times following injury. Although additional studies that investigate additional heat shock proteins with different cell lines must be performed, these initial results suggest that heat shock may be a potential therapeutic tool that should be further investigated for the treatment of sub-failure tendon and ligament injuries. Heat shock presents a potential aid for the regeneration of damaged musculoskeletal tissues. In this preliminary study of human hamstring tenocytes in vitro, the application of thermal stress for a short duration caused rapid proliferation of cells after they were allowed to recover. Furthermore, parallels were observed between the in vitro heat shock response and the natural wound healing process of tendons and ligaments. This information provides potential for heat shock to assist in healing damage tendon and ligament tissue. Future works will need to explore the effects of heat shock on a wider range of tendon and ligament cells, as well as develop methods of applying thermal stress to tissue in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Freeman JW. Tissue engineering options for ligament healing. Bone Tissue Regen Insights. 2009;2:13–23.

    CAS  Google Scholar 

  2. Attia M, Huet E, Gossard C, Menashi S, Tassoni MC, Martelly I. Early events of overused supraspinatus tendons involve matrix metalloproteinases and EMMPRIN/CD147 in the absence of inflammation. Am J Sports Med. 2013;41(4):908–17. https://doi.org/10.1177/0363546512473817.

    Article  Google Scholar 

  3. Vunjak-Novakovic G, Altman G, Horan R, Kaplan DL. Tissue engineering of ligaments. Annu Rev Biomed Eng. 2004;6:131–56. https://doi.org/10.1146/annurev.bioeng.6.040803.140037.

    Article  CAS  Google Scholar 

  4. Ekwueme EC, Shah JV, Mohiuddin M, Ghebes CA, Crispim JF, Saris DB, et al. Cross-talk between human tenocytes and bone marrow stromal cells potentiates extracellular matrix remodeling in vitro. J Cell Biochem. 2016;117(3):684–93. https://doi.org/10.1002/jcb.25353.

    Article  CAS  Google Scholar 

  5. Domnick C, Raschke MJ, Herbort M. Biomechanics of the anterior cruciate ligament: physiology, rupture and reconstruction techniques. World J Orthop. 2016;7(2):82–93. https://doi.org/10.5312/wjo.v7.i2.82.

    Article  Google Scholar 

  6. Ekwueme EC, Kwansa AL, Sharif K, El-Amin SF, Freeman JW. Recent advancements in ligament replacement. Recent Pat Biomed Eng. 2011;4(3):196–204. https://doi.org/10.2174/1874764711104030196.

    Article  Google Scholar 

  7. Hast MW, Zuskov A, Soslowsky LJ. The role of animal models in tendon research. Bone Joint Res. 2014;3(6):193–202. https://doi.org/10.1302/2046-3758.36.2000281.

    Article  CAS  Google Scholar 

  8. Rothrauff BB, Tuan RS. Cellular therapy in bone-tendon interface regeneration. Organ. 2014;10(1):13–28. https://doi.org/10.4161/org.27404.

    Article  Google Scholar 

  9. Kwan KH, Yeung KW, Liu X, Wong KK, Shum HC, Lam YW, et al. Silver nanoparticles alter proteoglycan expression in the promotion of tendon repair. Nanomedicine. 2014;10(7):1375–83. https://doi.org/10.1016/j.nano.2013.11.015.

    Article  CAS  Google Scholar 

  10. Sharma P, Maffulli N. Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am. 2005;87(1):187–202. https://doi.org/10.2106/JBJS.D.01850.

    Article  Google Scholar 

  11. James R, Kesturu G, Balian G, Chhabra AB. Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg Am. 2008;33(1):102–12. https://doi.org/10.1016/j.jhsa.2007.09.007.

    Article  Google Scholar 

  12. Lynch SA, Renstrom PA. Treatment of acute lateral ankle ligament rupture in the athlete. Conservative versus surgical treatment Sports Med. 1999;27(1):61–71.

    CAS  Google Scholar 

  13. Forsyth AL, Zourikian N, Valentino LA, Rivard GE. The effect of cooling on coagulation and haemostasis: should “ice” be part of treatment of acute haemarthrosis in haemophilia? Haemophilia. 2012;18(6):843–50. https://doi.org/10.1111/j.1365-2516.2012.02918.x.

    Article  CAS  Google Scholar 

  14. Kuo CK, Marturano JE, Tuan RS. Novel strategies in tendon and ligament tissue engineering: advanced biomaterials and regeneration motifs. Sports Med Arthrosc Rehabil Ther Technol. 2010;2:20. https://doi.org/10.1186/1758-2555-2-20.

    Article  Google Scholar 

  15. Kwansa AL, Empson YM, Ekwueme EC, Walters VI, Freeman JW, Laurencin CT. Novel matrix based anterior cruciate ligament (ACL) regeneration. Soft Matter. 2010;6(20):5016. https://doi.org/10.1039/c0sm00182a.

    Article  CAS  Google Scholar 

  16. Barber JG, Handorf AM, Allee TJ, Li WJ. Braided nanofibrous scaffold for tendon and ligament tissue engineering. Tissue Eng Part A. 2013;19(11–12):1265–74. https://doi.org/10.1089/ten.tea.2010.0538.

    Article  CAS  Google Scholar 

  17. Cooper JA Jr, Sahota JS, Gorum WJ 2nd, Carter J, Doty SB, Laurencin CT. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc Natl Acad Sci U S A. 2007;104(9):3049–54. https://doi.org/10.1073/pnas.0608837104.

    Article  CAS  Google Scholar 

  18. Erisken C, Zhang X, Moffat KL, Levine WN, Lu HH. Scaffold fiber diameter regulates human tendon fibroblast growth and differentiation. Tissue Eng Part A. 2013;19(3–4):519–28. https://doi.org/10.1089/ten.tea.2012.0072.

    Article  CAS  Google Scholar 

  19. Kashiwagi K, Mochizuki Y, Yasunaga Y, Ishida O, Deie M, Ochi M. Effects of transforming growth factor-beta 1 on the early stages of healing of the Achilles tendon in a rat model. Scand J Plast Reconstr Surg Hand Surg. 2004;38(4):193–7. https://doi.org/10.1080/02844310410029110.

    Article  Google Scholar 

  20. Dahlgren LA, Mohammed HO, Nixon AJ. Expression of insulin-like growth factor binding proteins in healing tendon lesions. J Orthop Res. 2006;24(2):183–92. https://doi.org/10.1002/jor.20000.

    Article  CAS  Google Scholar 

  21. Molloy T, Wang Y, Murrell GAC. The roles of growth factors in tendon and ligament healing. Sports Med. 2003;33(5):381–94.

    Article  Google Scholar 

  22. Boyer MI, Watson JT, Lou J, Manske PR, Gelberman RH, Cai SR. Quantitative variation in vascular endothelial growth factor mRNA expression during early flexor tendon healing: an investigation in a canine model. J Orthop Res. 2001;19(5):869–72. https://doi.org/10.1016/S0736-0266(01)00017-1.

    Article  CAS  Google Scholar 

  23. Watanabe N, Woo SL, Papageorgiou C, Celechovsky C, Takai S. Fate of donor bone marrow cells in medial collateral ligament after simulated autologous transplantation. Microsc Res Tech. 2002;58(1):39–44. https://doi.org/10.1002/jemt.10115.

    Article  Google Scholar 

  24. Chan BP, S-c F, Qin L, K-m L, Rolf CG, K-m C. Effects of basic fibroblast growth factor (bFGF) on early stages of tendon healing: a rat patellar tendon model. Acta Orthop Scand. 2000;71(5):513–8.

    Article  CAS  Google Scholar 

  25. Shibaguchi T, Sugiura T, Fujitsu T, Nomura T, Yoshihara T, Naito H, et al. Effects of icing or heat stress on the induction of fibrosis and/or regeneration of injured rat soleus muscle. J Physiol Sci. 2016;66(4):345–57. https://doi.org/10.1007/s12576-015-0433-0.

    Article  CAS  Google Scholar 

  26. Hatade T, Takeuchi K, Fujita N, Arakawa T, Miki A. Effect of heat stress soon after muscle injury on the expression of MyoD and myogenin during regeneration process. J Musculoskel Neuron Interact. 2014;14(3):325–33.

    CAS  Google Scholar 

  27. Riederer I, Negroni E, Bigot A, Bencze M, Di Santo J, Aamiri A, et al. Heat shock treatment increases engraftment of transplanted human myoblasts into immunodeficient mice. Transplant Proc. 2008;40(2):624–30. https://doi.org/10.1016/j.transproceed.2008.01.026.

    Article  CAS  Google Scholar 

  28. Harder Y, Contaldo C, Klenk J, Banic A, Jakob SM, Erni D. Improved skin flap survival after local heat preconditioning in pigs. J Surg Res. 2004;119(1):100–5. https://doi.org/10.1016/j.jss.2003.11.002.

    Article  CAS  Google Scholar 

  29. Rylander MN, Diller KR, Wang S, Aggarwal SJ. Correlation of HSP70 expression and cell viability following thermal stimulation of bovine aortic endothelial cells. J Biomech Eng. 2005;127(5):751–7. https://doi.org/10.1115/1.1993661.

    Article  Google Scholar 

  30. Lee MW, Muramatsu T, Uekusa T, Lee JH, Shimono M. Heat stress induces alkaline phosphatase activity and heat shock protein 25 expression in cultured pulp cells. Int Endod J. 2008;41(2):158–62. https://doi.org/10.1111/j.1365-2591.2007.01331.x.

    Article  CAS  Google Scholar 

  31. Chung E, Sampson AC, Rylander MN. Influence of heating and cyclic tension on the induction of heat shock proteins and bone-related proteins by MC3T3-E1 cells. Biomed Res Int 2014;2014:354260. doi:https://doi.org/10.1155/2014/354260, 1, 16.

  32. Shui C, Scutt A. Mild heat shock induces proliferation, alkaline phosphatase activity, and mineralization in human bone marrow stromal cells and Mg-63 cells in vitro. J Bone Miner Res. 2001;16(4):731–41. https://doi.org/10.1359/jbmr.2001.16.4.731.

    Article  CAS  Google Scholar 

  33. Yoshida K, Uoshima K, Oda K, Maeda T. Influence of heat stress to matrix on bone formation. Clin Oral Implants Res. 2009;20(8):782–90. https://doi.org/10.1111/j.1600-0501.2008.01654.x.

    Article  Google Scholar 

  34. Oberringer M, Baum HP, Jung V, Welter C, Frank J, Kuhlmann M, et al. Differential expression of heat shock protein 70 in well healing and chronic human wound tissue. Biochem Biophys Res Commun. 1995;214(3):1009–14. https://doi.org/10.1006/bbrc.1995.2386.

    Article  CAS  Google Scholar 

  35. Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol. 1997;17(9):5317–27.

    Article  CAS  Google Scholar 

  36. Helmbrecht K, Zeise E, Rensing L. Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif. 2000;33:341–65.

    Article  CAS  Google Scholar 

  37. Sherman MY, Gabai VL. Hsp70 in cancer: back to the future. Oncogene. 2015;34(32):4153–61. https://doi.org/10.1038/onc.2014.349.

    Article  CAS  Google Scholar 

  38. Suzuki K, Watanabe M. Modulation of cell growth and mutation induction by introduction of the expression vector of human hsp70 gene. Exp Cell Res. 1994;215(1):75–81. https://doi.org/10.1006/excr.1994.1317.

    Article  CAS  Google Scholar 

  39. Zeise E, Kuhl N, Kunz J, Rensing L. Nuclear translocation of stress protein Hsc70 during S phase in rat C6 glioma cells. Cell Stress Chaperones. 1998;3(2):94–9.

    Article  CAS  Google Scholar 

  40. Yoshidomi K, Murakami A, Yakabe K, Sueoka K, Nawata S, Sugino N. Heat shock protein 70 is involved in malignant behaviors and chemosensitivities to cisplatin in cervical squamous cell carcinoma cells. J Obstet Gynaecol Res. 2014;40(5):1188–96. https://doi.org/10.1111/jog.12325.

    Article  CAS  Google Scholar 

  41. Zhe Y, Li Y, Liu D, Su DM, Liu JG, Li HY. Extracellular HSP70-peptide complexes promote the proliferation of hepatocellular carcinoma cells via TLR2/4/JNK1/2MAPK pathway. Tumour Biol. 2016;37(10):13951–9. https://doi.org/10.1007/s13277-016-5189-5.

    Article  CAS  Google Scholar 

  42. Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat shock proteins and cancer. Trends Pharmacol Sci. 2017;38(3):226–56. https://doi.org/10.1016/j.tips.2016.11.009.

    Article  CAS  Google Scholar 

  43. Mala JG, Rose C. Interactions of heat shock protein 47 with collagen and the stress response: an unconventional chaperone model? Life Sci. 2010;87(19–22):579–86. https://doi.org/10.1016/j.lfs.2010.09.024.

    Article  CAS  Google Scholar 

  44. Ito S, Nagata K. Biology of Hsp47 (serpin H1), a collagen-specific molecular chaperone. Semin Cell Dev Biol. 2017;62:142–51. https://doi.org/10.1016/j.semcdb.2016.11.005.

    Article  CAS  Google Scholar 

  45. Ishida Y, Kubota H, Yamamoto A, Kitamura A, Bachinger HP, Nagata K. Type I collagen in Hsp47-null cells is aggregated in endoplasmic reticulum and deficient in N-propeptide processing and fibrillogenesis. Mol Biol Cell. 2006;17(5):2346–55. https://doi.org/10.1091/mbc.E05-11-1065.

    Article  CAS  Google Scholar 

  46. Satoh M, Hirayoshi K, Yokota S, Hosokawa N, Nagata K. Intracellular interaction of collagen-specific stress protein HSP47 with newly synthesized procollagen. J Cell Biol. 1996;133(2):469–83.

    Article  CAS  Google Scholar 

  47. Liang C-C, Park AY, Guan J-L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protocols. 2007;2(2):329–33.

    Article  CAS  Google Scholar 

  48. Chung E, Rylander MN. Response of preosteoblasts to thermal stress conditioning and osteoinductive growth factors. Cell Stress Chaperones. 2012;17(2):203–14. https://doi.org/10.1007/s12192-011-0300-8.

    Article  CAS  Google Scholar 

  49. Birch HL, Wilson AM, Goodship AE. The effect of exercise-induced localised hyperthermia on tendon cell survival. J Exp Biol. 1997;200(Pt 11):1703–8.

    Article  CAS  Google Scholar 

  50. Hosaka Y, Ozoe S, Kirisawa R, Ueda H, Takehana K, Yamaguchi M. Effect of heat on synthesis of gelatinases and pro-inflammatory cytokines in equine tendinocytes. Biomed Res. 2006;27(5):233–41.

    Article  CAS  Google Scholar 

  51. Hsu SL, Liang R, Woo SL. Functional tissue engineering of ligament healing. Sports Med Arthrosc Rehabil Ther Technol. 2010;2:12. https://doi.org/10.1186/1758-2555-2-12.

    Article  Google Scholar 

  52. Millar NL, Murrell GA. Heat shock proteins in tendinopathy: novel molecular regulators. Mediat Inflamm 2012;2012:436203. doi:https://doi.org/10.1155/2012/436203, 1, 7.

  53. Milarski KL, Welch WJ, Morimoto RI. Cell cycle-dependent association of HSP70 with specific cellular proteins. J Cell Biol. 1989;108(2):413–23.

    Article  CAS  Google Scholar 

  54. Wang R, Kovalchin JT, Muhlenkamp P, Chandawarkar RY. Exogenous heat shock protein 70 binds macrophage lipid raft microdomain and stimulates phagocytosis, processing, and MCH-II presentation of antigens. Blood. 2006;107(4):1636–42. https://doi.org/10.1182/blood-200506-2559.

    Article  CAS  Google Scholar 

  55. Guzhova I, Kislyakova K, Moskaliova O, Fridlanskaya I, Tytell M, Cheetham M, et al. In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res. 2001;914:66–73.

    Article  CAS  Google Scholar 

  56. Nagai N, Hosokawa M, Itohara S, Adachi E, Matsushita T, Hosokawa N, et al. Embryonic lethality of molecular chaperone Hsp47 knockout mice is associated with defects in collagen biosynthesis. J Cell Biol. 2000;150(6):1499–505.

    Article  CAS  Google Scholar 

  57. Halper J, Griffin A, Hu W, Jung C, Zhang J, Pan H, et al. In vitro culture decreases the expression of TGF(beta), Hsp47 and type I procollagen and increases the expression of CTGF in avian tendon explants. J Musculoskelet Neuronal Interact. 2005;5(1):53–63.

    CAS  Google Scholar 

  58. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004;18(7):816–27. https://doi.org/10.1096/fj.03-1273rev.

    Article  CAS  Google Scholar 

  59. Li L, Klim JR, Derda R, Courtney AH, Kiessling LL. Spatial control of cell fate using synthetic surfaces to potentiate TGF-beta signaling. Proc Natl Acad Sci U S A. 2011;108(29):11745–50. https://doi.org/10.1073/pnas.1101454108.

    Article  Google Scholar 

  60. Faulknor RA, Olekson MA, Nativ NI, Ghodbane M, Gray AJ, Berthiaume F. Mesenchymal stromal cells reverse hypoxia-mediated suppression of alpha-smooth muscle actin expression in human dermal fibroblasts. Biochem Biophys Res Commun. 2015;458(1):8–13. https://doi.org/10.1016/j.bbrc.2015.01.013.

    Article  CAS  Google Scholar 

  61. Henninger HB, Valdez WR, Scott SA, Weiss JA. Elastin governs the mechanical response of medial collateral ligament under shear and transverse tensile loading. Acta Biomater. 2015;25:304–12. https://doi.org/10.1016/j.actbio.2015.07.011.

    Article  CAS  Google Scholar 

  62. Fang F, Lake SP. Multiscale mechanical integrity of human supraspinatus tendon in shear after elastin depletion. J Mech Behav Biomed Mater. 2016;63:443–55. https://doi.org/10.1016/j.jmbbm.2016.06.032.

    Article  Google Scholar 

  63. Smith KD, Clegg PD, Innes JF, Comerford EJ. Elastin content is high in the canine cruciate ligament and is associated with degeneration. Vet J. 2014;199(1):169–74. https://doi.org/10.1016/j.tvjl.2013.11.002.

    Article  CAS  Google Scholar 

  64. Zhang J, Wang JH. The effects of mechanical loading on tendons—an in vivo and in vitro model study. PLoS One. 2013;8(8):e71740. https://doi.org/10.1371/journal.pone.0071740.

    Article  CAS  Google Scholar 

  65. Lu H, Zheng C, Wang Z, Chen C, Chen H, Hu J. Effects of low-intensity pulsed ultrasound on new trabecular bone during bone-tendon junction healing in a rabbit model: a synchrotron radiation micro-CT study. PLoS One. 2015;10(4):e0124724. https://doi.org/10.1371/journal.pone.0124724.

    Article  CAS  Google Scholar 

  66. Hu B, Zhang Y, Zhou J, Li J, Deng F, Wang Z, et al. Low-intensity pulsed ultrasound stimulation facilitates osteogenic differentiation of human periodontal ligament cells. PLoS One. 2014;9(4):e95168. https://doi.org/10.1371/journal.pone.0095168.

    Article  Google Scholar 

  67. Yang Z, Ren L, Deng F, Wang Z, Song J. Low-intensity pulsed ultrasound induces osteogenic differentiation of human periodontal ligament cells through activation of bone morphogenetic protein-smad signaling. J Ultrasound Med. 2014;33(5):865–73. https://doi.org/10.7863/ultra.33.5.865.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph W. Freeman.

Ethics declarations

The authors alone are responsible for the content and writing of the paper.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, J.V., Ekwueme, E.C. & Freeman, J.W. Investigation of the Short-term Effects of Heat Shock on Human Hamstring Tenocytes In Vitro. Regen. Eng. Transl. Med. 6, 50–61 (2020). https://doi.org/10.1007/s40883-018-0070-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-018-0070-2

Keywords

Navigation