Skip to main content

Advertisement

Log in

Reciprocal effects of huanglongbing infection and nutritional status of citrus trees: a review

  • Review
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

In the past 15 years, the global citrus industry has experienced significant losses in the fruit production, largely due to the huanglongbing (HLB). This bacterial disease impairs water and nutrient uptake by roots causing nutritional disorders and, reciprocally, metabolic imbalances associated to oxidative stress and carbohydrate distribution in trees. The sustainability of optimum yield and fruit quality of citrus are achieved by growing canopy and rootstock varieties with superior horticultural characteristics in well-established orchards, which relies on efficient irrigation and/or fertilization, as well crop protection. Then, attention to enhanced nutrient supply increased significantly in commercial groves. In order to better understand the pathological processes, this review discusses recent scientific advances and major findings in most citrus-producing regions of the world, critically analyzing nutrient management practices as a component of an intricate strategy to maintain tree health, fruit yield, and quality. Moreover, we consider the role of balanced and constant nutrition of citrus trees to sustain citrus production under endemic HLB or non-HLB conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achor DS, Exteberria E, Wang N, Folimonova SY, Chung KR, Albrigo LG (2010) Sequence of anatomical symptom observations in citrus affected with huanglongbing disease. Plant Pathology 9:56–64

    Google Scholar 

  • Agrios GN (2005) Plant pathology. 5th Ed. Elsevier Academic Press, Amsterdam

  • Ahmad K, Sijam K, Hashim H, Rosli Z, Abdu A (2011) Field assessment of calcium, copper and zinc ions on plant recovery and disease severity following infection of huanglongbing (HLB) disease. African Journal of Microbiology Research 5:4967–4979

    CAS  Google Scholar 

  • Albrecht U, Bowman KD (2011) Tolerance of the trifoliate citrus hybrid US-897 (Citrus reticulata Blanco x Poncirus trifoliata L. Raf.) to Huanglongbing. HortScience 46:16–22

    CAS  Google Scholar 

  • Albrecht U, Bowman KD (2012) Tolerance of trifoliate citrus rootstock hybrids to Candidatus Liberibacter asiaticus. Scientia Horticulturae 147:71–80

    Google Scholar 

  • Albrecht U, McCollum G, Bowman KD (2012) Influence of rootstock variety on Huanglongbing disease development in field-grown sweet orange (Citrus sinensis [L.] Osbeck) trees. Scientia Horticulturae 138:210–220

    Google Scholar 

  • Albrigo LG, Stover EW (2015) Effect of plant growth regulators and fungicides on huanglongbing-related preharvest fruit drop of citrus. HortTechnology 25:785–790

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany 53:1331–1341

    CAS  PubMed  Google Scholar 

  • Amthor JS (2000) The McCree-de wit-penning de Vries-Thornley respiration paradigms: 30 years later. Annals of Botany 86:1–20

    CAS  Google Scholar 

  • Andrade SAL, Gratão PL, Azevedo RA, Silveira APD, Schiavinato MA, Mazzafera P (2010) Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environmental and Experimental Botany 68:198–207

    CAS  Google Scholar 

  • Aritua V, Achor D, Gmitter FG, Albrigo G, Wang N (2013) Transcriptional and microscopic analyses of citrus stem and root responses to Candidatus Liberibacter asiaticus infection. PLoS ONE 8:e73742

  • Baldwin E, Plotto A, Manthey J, McCollum G, Bai J, Irey M, Cameron R, Luzio G (2010) Effect of liberibacter infection (huanglongbing disease) of citrus on orange fruit physiology and fruit/fruit juice quality: chemical and physical analyses. Journal of Agricultural and Food Chemistry 58:1247–1262

    CAS  PubMed  Google Scholar 

  • Baldwin E, Bai J, Plotto A, Manthey J, Raithore S, Deterre S, Zhao W, Nunes CN, Stansly PA, Tansey JA (2017) Effect of vector control and foliar nutrition on quality of orange juice affected by huanglongbing: chemical analysis. HortScience 52:1100–1106

    CAS  Google Scholar 

  • Baldwin E, Plotto A, Bai J, Manthey J, Zhao W, Raithore S, Irey M (2018) Effect of abscission zone formation on orange (citrus sinensis) fruit/juice quality for trees affected by huanglongbing (HLB). Journal of Agricultural and Food Chemistry 66:2877–2890

    CAS  PubMed  Google Scholar 

  • Bassanezi RB, Montesino LH, Gasparoto MCG, Bergamin-Filho A, Amorim L (2011) Yield loss caused by huanglongbing in different sweet orange cultivars in São Paulo, Brazil. European Journal of Plant Pathology 130:577–586

    Google Scholar 

  • Batool A, Iftikhar Y, Mughal SM, Khan MM, Jaskani MJ, Abbas M, Khan IA (2007) Citrus greening disease – a major cause of citrus decline in the world – a review. HortScience 34:159–166

    Google Scholar 

  • Belasque J Jr, Bassanezi RB, Yamamoto PT, Ayres AJ, Tachibana A, Violante AR, Tank A Jr, Di Giorgi F, Tersi FEA, Menezes GM, Dragone J, Jank RH Jr, Bové JM (2010) Lessons from huanglongbing management in São Paulo State, Brazil. Journal of Plant Pathology 92:285–302

    Google Scholar 

  • Boava LP, Sagawa CHD, Cristofani-Yaly M, Machado MA (2015) Incidence of ‘Candidatus Liberibacter asiaticus’ infected plants among Citrandarins as rootstock and scion under field conditions. Phytopathology 105:518–524

    CAS  PubMed  Google Scholar 

  • Bové JM (2006) Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology 88:7–37

    Google Scholar 

  • Cakmak IM (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. The New Phytologist 146:185–205

  • Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiologia Plantarum 133:692–704

    CAS  PubMed  Google Scholar 

  • Campos-Herrera R, Pathak E, El-Borai FE, Schumann A, Abd-Elgawad MMM, Duncan LW (2013) New citriculture system suppresses native and augmented entomopathogenic nematodes. Biological Control 66:183–194

    Google Scholar 

  • Campos-Herrera R, El-Borai FE, Ebert TA, Schumann A, Duncan LW (2014) Management to control citrus greening alters the soil food web and severity of a pest-disease complex. Biological Control 76:41–51

    Google Scholar 

  • Canales E, Coll Y, Hernández I, Portieles R, García MR, López Y, Aranguren M, Alonso E, Delgado R, Luis M (2016). Candidatus Liberibacter asiaticus, causal agent of citrus Huanglongbing, is reduced by treatment with Brassinosteroids. PloS One 11:e0146223

  • Carvalhais LC, Dennis PG, Fan B, Fedoseyenko D, Kierul K, Becker A, von Wiren N, Borriss R (2013) Linking plant nutritional status to plant-microbe interactions. PLoS ONE 8:e68555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cimò G, Bianco RL, Gonzalez P, Bandaranayake W, Etxeberria E, Syvertsen JP (2013) Carbohydrate and nutritional responses to stem girdling and drought stress with respect to understanding symptoms of Huanglongbing in citrus. HortScience 48:920–928

    Google Scholar 

  • Cowan JA (2002) Structural and catalytic chemistry of magnesium- dependent enzymes. Biometals 15:225–235

    CAS  PubMed  Google Scholar 

  • Cruz-Munoz M, Petrone JR, Cohn AR, Munoz-Beristain A, Killiny N, Drew JC, Triplett EW (2018) Development of chemically defined media reveals citrate as preferred carbon source for Liberibacter growth. Frontiers in Microbiology 9:668

    PubMed  PubMed Central  Google Scholar 

  • da Graça JV (1991) Citrus greening disease. Annual Review of Phytopathology 29:109–136

    Google Scholar 

  • Dala Paula BM, Plotto A, Bai J, Manthey JA, Baldwin EA, Ferrarezi RS, Gloria MBA (2019) Effect of huanglongbing or greening disease on orange juice quality, a review. Frontiers in Plant Science 9:1976

    PubMed  PubMed Central  Google Scholar 

  • Dordas C (2008) Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agronomy for Sustainable Development 28:33–46

    CAS  Google Scholar 

  • Ebel RC, Hamido S, Morgan KT (2019) Interaction of Huanglongbing and foliar applications of copper on growth and nutrient acquisition of Citrus sinensis cv. Valencia. HortScience 54:297–302

    CAS  Google Scholar 

  • Etxeberria E, Narciso C (2012) Phloem anatomy of citrus trees: healthy vs. greening-affected. Proceedings of the Florida State Horticultural Society 125:67–70

    Google Scholar 

  • Etxeberria E, Gonzalez P, Achor D, Albrigo G (2009) Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees. Physiological and Molecular Plant Pathology 74:76–83

    CAS  Google Scholar 

  • Fan J, Chen C, Brlansky RH, Gmitter JRFG, Li ZG (2010) Changes in carbohydrate metabolism in Citrus sinensis infected with ‘Candidatus Liberibacter asiaticus’. Plant Pathology 59:1037–1043

    CAS  Google Scholar 

  • Fan J, Chen C, Yu Q, Khalaf A, Achor DS, Brlansky RH, Moore GA, Li Z-G, Gmitter FG Jr (2012) Comparative transcriptional and anatomical analyses of tolerant rough lemon and susceptible sweet orange in response to ‘Candidatus Liberibacter asiaticus’ infection. Molecular Plant-Microbe Interactions 25:1396–1407

    CAS  PubMed  Google Scholar 

  • FAOSTAT (2016) FAO data for agriculture: statistics database. Available at: http://faostat.fao.org/faostat/collections?version=extandhasbulk=0andsubset=agricul-ture. Accessed on October 28, 2019

  • Febres VJ, Khalaf A, Gmitter FG Jr, Moore GA (2009) Production of disease resistance in citrus by understanding natural defense pathways and pathogen interactions. Tree and Forestry Science and Biotechnology 3:30–39

    Google Scholar 

  • Ferrarezi RS, Wright AL, Boman BJ, Schumann AW, Gmitter FG, Grosser JW (2017a) Protected fresh grapefruit cultivation systems: Antipsyllid screen effects on plant growth and leaf transpiration, vapor pressure deficit, and nutrition. HortTechnology 27:666–674

    CAS  Google Scholar 

  • Ferrarezi RS, Wright AL, Boman BJ, Schumann AW, Gmitter FG, Grosser JW (2017b) Protected fresh grapefruit cultivation systems: Antipsyllid screen effects on environmental variables inside enclosures. HortTechnology 27:675–681

    Google Scholar 

  • Folimonova SY, Achor DS (2010) Early events of citrus greening (huanglongbing) disease development at the ultrastructural level. Phytopathology 100:949–958

    PubMed  Google Scholar 

  • Folimonova SY, Robertson CJ, Garnsey SM, Gowda S, Dawson WO (2009) Examination of the responses of different genotypes of citrus to huanglongbing (citrus greening) under different conditions. Phytopathology 99:1346–1354

    PubMed  Google Scholar 

  • Folimonova SY, Robertson CJ, Shilts T, Folimonov AS, Hilf ME, Garnsey SM, Dawson WO (2010) Infection with strains of Citrus tristeza virus does not exclude superinfection by other strains of the virus. Journal of Virology 84:1314–1325

    CAS  PubMed  Google Scholar 

  • Fones H, Davis CAR, Rico A, Fang F, Smith JAC, Preston GM (2010) Metal hyperaccumulation armors plants against disease. PLoS Pathogens 6:1–13

    Google Scholar 

  • Fujiwara K, Iwanami T, Fujikawa Y (2018) Alterations of Candidatus Liberibacter asiaticus-associated microbiota decrease survival of Ca. L. asiaticus in in vitro assays. Frontiers in Microbiology 9:3089

    PubMed  PubMed Central  Google Scholar 

  • Fundecitrus (2017) Fundo de Defesa da Citricultura: Greening causou incremento de 85% nos custos de produção de citros da Flórida (EUA). Available at: https://www.fundecitrus.com.br/comunicacao/noticias/integra/greening-causou-incremento-de-85-nos-custos-de-producao-de-citros-da-florida-eua/556m. Accessed on October 28, 2019)

  • FUNDECITRUS (2019a) Fundo de Defesa da Citricultura: Levantamento da incidência das doenças dos citros: greening, CVC e cancro cítrico no cinturão citrícola de São Paulo e Triângulo/Sudoeste mineiro. Available at: https://www.fundecitrus.com.br/pdf/levantamentos/levantamento-doencas-2019.pdf. Accessed on May 23, 2020

  • FUNDECITRUS (2019b) Fundo de Defesa da Citricultura: Manejo do Greening. Available at: https://www.fundecitrus.com.br/comunicacao/manual_detalhes/manejo-dogreening/84. Accessed on May 23, 2020

  • Gibon Y, Bläsing OE, Palacios-Rojas N, Pankovic D, Hendriks JH, Fisahn J, Höhne M, Günther M, Stitt M (2004) Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP glucose pyrophosphorylase in the following light period. The Plant Journal 39:847–862

    CAS  PubMed  Google Scholar 

  • Gibon Y, Pyl ET, Sulpice R, Lunn JE, Höhne M, Günther M, Stitt M (2009) Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant, Cell & Environment 32:859–874

    CAS  Google Scholar 

  • Gottwald TR (2010) Current epidemiological understanding of citrus huanglongbing. Annual Review of Phytopathology 48:119–139

    CAS  PubMed  Google Scholar 

  • Gottwald TR, Graham JH (2014) Citrus diseases with global ramifications including citrus canker and huanglongbing. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 9:016

  • Gottwald TR, Graham JH, Irey MS, McCollum TG, Wood BW (2012) Inconsequential effect of nutritional treatments on huanglongbing control, fruit quality, bacterial titer and disease progress. Crop Protection 36:73–82

    Google Scholar 

  • Graham J, Gottwald T, Setamou, M (2020 Status of huanglongbing (HLB) outbreaks in Florida, California and Texas. Tropical Plant Pathology https://doi.org/10.1007/s40858-020-00335-y

  • Graham JH, Johnson EG (2013) Presymptomatic fibrous root decline in citrus trees caused by huanglongbing and potential interaction with Phytophthora spp. Plant Disease 97:1195–1199

    CAS  PubMed  Google Scholar 

  • Gratão PL, Monteiro CC, Tezotto T, Carvalho RF, Alves LR, Peres LEP, Azevedo RA (2015) Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. Biometals 28:803–816

    PubMed  Google Scholar 

  • Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn-superoxide dismutase. Proceedings of the National Academy of Sciences 90:1629–1633

    CAS  Google Scholar 

  • Halbert SE, Manjunath KL (2004) Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus. A literature review and assessment of risk in Florida. Florida Entomologist 87:330–353

    Google Scholar 

  • Hamido SA, Morgan KT, Kadyampakeni DM (2017) The effect of Huanglongbing on young citrus tree water use. HortTechnology 27:659–665

  • Hamido SA, Ebel RC, Morgan KT (2019) Interaction of huanglongbing and foliar applications of copper on water relations of Citrus sinensis cv. Valencia. Plants 8:298

    CAS  PubMed Central  Google Scholar 

  • Hao G, Stover E, Gupta G (2016) Overexpression of a modified plant thionin enhances disease resistance to citrus canker and huanglongbing (HLB). Frontiers in Plant Science 7:1078

    PubMed  PubMed Central  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant and Soil 248:43–59

    CAS  Google Scholar 

  • Hippler WA, Ciprianoa DA, Boaretto RM, Quaggio JA, Gaziola SA, Azevedo RA, Mattos-Jr D (2016) Citrus rootstocks regulate the nutritional status and antioxidant system of trees under copper stress. Environmental and Experimental Botany 130:42–52

    CAS  Google Scholar 

  • Hippler FWR, Petená G, Boaretto RM, Quaggio JA, Azevedo RA, Mattos-Jr D (2018) Mechanisms of copper stress alleviation in Citrus trees after metal uptake by leaves or roots. Environmental Science and Pollution Research 5:13134–13146

    Google Scholar 

  • Huber DM, Graham RD (1999) The role of nutrition in crop resistance and tolerance to diseases. In: Rengel Z (ed) Mineral nutrition of crops: fundamental mechanisms and implications, vol 1999. Food Products Press, the Haworth Press, Inc, New York, pp 169–206

  • Huber DM, Haneklaus S (2007) Managing nutrition to control plant disease. Landbauforschung Völkenrode 57:313–322

  • Irey M, Mai P, Graham J, Johnson J (2008) Data trends and results from an HLB testing laboratory that has processed over 64,000 commercial and research samples over a two year period in Florida. Abstract: International Research Conference on Huanglongbing Proc. 103

  • Jagoueix S, Bove JM, Garnier M (1994) The phloem-limited bacterium of greening disease of citrus is a member of the subdivision of the proteobacteria. International Journal of Systematic and Evolutionary Microbiology 44:397–486

    Google Scholar 

  • Johnson EG, Wu J, Bright DB, Graham JH (2014) Association of “Candidatus Liberibacter asiaticus” root infection, but not phloem plugging with root loss on huanglongbing-affected trees prior to appearance of foliar symptoms. Plant Pathology 63:290–298

    Google Scholar 

  • Kadyampakeni DM (2020) Interaction of soil boron application with leaf B concentration, root length density, and canopy size of citrus affected by Huanglongbing. Journal of Plant Nutrition 43:186–193

    CAS  Google Scholar 

  • Kadyampakeni DM, Morgan KT, Schumann AW, Nkedi-Kizza P, Mahmoud K (2014a) Phosphorus and potassium distribution and adsorption on two Florida sandy soils. Soil Science Society of America Journal 78:325–334

    Google Scholar 

  • Kadyampakeni DM, Morgan KT, Schumann AW, Nkedi-Kizza P, Mahmoud K (2014b) Ammonium and nitrate distribution in the soil using drip and microsprinkler irrigation for citrus production. Soil Science Society of America Journal 78:645–654

    Google Scholar 

  • Kadyampakeni DM, Morgan KT, Schumann AW, Nkedi-Kizza P, Obreza TA (2014c) Water use in drip and microsprinkler-irrigated citrus trees. Soil Science Society of America Journal 78:1351–1361

    CAS  Google Scholar 

  • Kadyampakeni DM, Morgan KT, Schumann AW (2016) Biomass, nutrient accumulation and tree size relationships for drip- and microsprinkler-irrigated orange trees. Journal of Plant Nutrition 39:589–599

    CAS  Google Scholar 

  • Khan MA (2013) Fluctuations in stored reserves of soluble carbohydrates during various months of a year in four citrus species. Innovative Research and Chemistry 1:7–13

    CAS  Google Scholar 

  • Koen TJ, Langenegger W (1970) Effect of greening virus on the macroelement content of citrus leaves. Farming in South Africa 45:65–66

    Google Scholar 

  • Koh EJ, Zhou L, Williams DS, Park J, Ding N, Duan YP, Kang BH (2012) Callose deposition in the phloem plasmodesmata and inhibition of phloem transport in citrus leaves infected with “Candidatus Liberibacter asiaticus”. Protoplasma 249:687–697

    PubMed  Google Scholar 

  • Krauss A (1999) Balanced nutrition and biotic stress, IFA agricultural conference on managing plant nutrition, 29 June-2 July 1999, Barcelona, Spain

  • Kumar N, Kiran F, Etxeberria E (2018) Huanglongbing-induced anatomical changes in citrus fibrous root orders. Hortscience 53:829–837

    Google Scholar 

  • Lambers H, Hayes PE, Laliberté E, Oliveira RS, Turner BL (2015) Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends in Plant Science 20:83–90

    CAS  PubMed  Google Scholar 

  • Langdon KW, Schumann R, Stelinski LL, Rogers ME (2018) Influence of tree size and application rate on expression of Thiamethoxam in citrus and its efficacy against Diaphorina citri (Hemiptera: Liviidae). Journal of Economic Entomology 111:770–779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lecourieux D, Raneva R, Pugin A (2006) Calcium in plant defense-signaling pathways. The New Phytologist 171:249–269

    CAS  PubMed  Google Scholar 

  • Li W, Hartung JS, Levy L (2006) Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. Journal of Microbiological Methods 66:104–115

    CAS  PubMed  Google Scholar 

  • Liao H-L, Burns JK (2012) Gene expression in Citrus sinensis fruit tissues harvested from huanglongbing-infected trees: comparison with girdled fruit. Journal of Experimental Botany 63:3307–3319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Gehan JP, Sharkey TD (2005) Day length and circadian effects on starch degradation and maltose metabolism. Plant Physiology 138:2280–2291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mafra V, Martins PK, Francisco CS, Ribeiro-Alves M, Freitas-Astúa J, Machado MA (2013) Candidatus Liberibacter americanus induces significant reprogramming of the transcriptome of the susceptible citrus genotype. BMC Genomics 14:247–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner H (2012) Mineral nutrition of higher plants, 3rd edn. Elsevier, London

    Google Scholar 

  • Martinelli F, Uratsu SL, Albrecht U, Reagan RL, Phu ML, Britton M, Buffalo V, Fass J, Leicht E, Zhao W, Lin D, D’Souza R, Davis CE, Bowman KD, Dandekar AM (2012) Transcriptome profiling of citrus fruit response to huanglongbing disease. PLoS ONE 7:e38039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinelli F, Reagan RL, Uratsu SL, Phu ML, Albrecht U, Zhao W, Davis CE, Bowman KD, Dandekar AM (2013) Gene regulatory networks elucidating Huanglongbing disease mechanisms. PLoS ONE 8:e74256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mattos D Jr, Quaggio JA, Cantarella H, Alva AK (2003) Nutrient content of biomass components of Hamlin sweet orange trees. Science in Agriculture 60:155–160

    Google Scholar 

  • Mattos D Jr, Quaggio JA, Cantarella H, Alva AK, Graetz DA (2006) Response of young citrus trees on selected rootstocks to nitrogen, phosphorus, and potassium fertilization. Journal of Plant Nutrition 29:1371–1385

    CAS  Google Scholar 

  • Mattos D Jr, Quaggio JA, Boareto RM (2010) Uso de elicitores para defesa em plantas cítricas. Citrus Research and Technology 31:65–74

    Google Scholar 

  • Mattos D Jr, Kadyampakeni DM, Quiñones AO, Boaretto RM, Morgan KT, Quaggio JA (2020) Soil and nutrition interactions. In: Talon M, Caruso M, Gmitter F Jr (eds) The genus Citrus 1stEd. Elsevier, Amsterdam, pp 311–331

    Google Scholar 

  • Matyssek R, Agerer R, Ernst D, Munch J-C, Oßwald W, Pretzsch H, Priesack E, Schnyder H, Treutte D (2005) The plant’s capacity in regulating resource demand. Plant Biology 7:560–580

    CAS  PubMed  Google Scholar 

  • McClean APD, Schwarz RE (1970) Greening or blotchy-mottle disease of citrus. Phytophylactica 2:177–194

    Google Scholar 

  • McCollum G, Baldwin E (2017) Huanglongbing: devastating disease of citrus. In: Janick J (Ed.) Horticultural Reviews. Wiley-Blackwell, Hoboken .pp. 315–361

  • Medina CL, Saccini VAV, Dos Santos DMM, Machado RS, Bataglia OC, Furlani P (2014) Seasonal concentration of macro and micronutrients in different vegetative organs of Valencia. Proceedings IRCHLB III oranges tree affected by HLB.

  • Mendis HC, Ozcan A, Santra S, De La Fuente L (2019) A novel Zn chelate (TSOL) that moves systemically in citrus plants inhibits growth and biofilm formation of bacterial pathogens. PLoS ONE 14:e0218900

  • Mikkelsen R, Mutenda KE, Mant A, Schurmann P, Blennow A (2005) α-Glucan, water dikinase (GWD): a plastidic enzyme with redox-regulated and coordinated catalytic activity and binding affinity. Proceedings of the National Academy of Sciences 102:785–1790

    Google Scholar 

  • Milani CO, Dovis VL, Hippler FWR, Quaggio JA, Boaretto RM, Coletta-Filho HD, Mattos-Jr (2019) Can negative effects of HLB be mitigated by calcium and magnesium fertilizations in citrus trees? In: 6th International Conference on Huanglongbing. Riverside. Proceedings IRCHLB VI

  • Molin JP, Colaço AF, Carlos EF, Mattos D Jr (2012) Yield mapping, soil fertility and tree gaps in an orange orchard. Revista Brasileira de Fruticultura 34:1256–1265

    Google Scholar 

  • Morgan KT, Rouse RE, Ebel RC (2016) Foliar applications of essential nutrients on growth and yield of ‘Valencia’ sweet orange infected with Huanglongbing. HortScience 51:1482–1493

    CAS  Google Scholar 

  • Musetti R, Buxa SV, De Marco F, Loschi A, Polizzotto R, Kogel KH, van Bel AJE (2013) Phytoplasma-triggered Ca2+ influx is involved in sieve-tube blockage. Molecular Plant-Microbe Interactions 26:379–386

    CAS  PubMed  Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine (2018) A review of the citrus greening research and development efforts supported by the Citrus Research and Development Foundation: fighting a ravaging disease. The National Academies Press, Washington, DC

    Google Scholar 

  • Nwugo CC, Lin H, Duan Y, Civerolo EL (2013) The effect of ‘Candidatus Liberibacter asiaticus’ infection on the proteomic profiles and nutritional status of pre-symptomatic and symptomatic grapefruit (Citrus paradisi) plants. BMC Plant Biology 13:59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver JE, Sefick SA, Parker JK, Arnold T, Cobine PA, De La Fuente L (2014) Ionome changes in Xylella fastidiosa-infected Nicotiana tabacum correlate with virulence and discriminate between subspecies of bacterial isolates. Molecular Plant-Microbe Interactions 27:1048–1058

    CAS  PubMed  Google Scholar 

  • Oostendorp M, Kunz W, Dietrich B, Staub T (2001) Induced disease resistance in plants by chemicals. European Journal of Plant Pathology 107:19–28

    CAS  Google Scholar 

  • Petená G, Tanaka FAO, Mesquita GL, Boaretto RM, Zambrosi FCB, Quaggio JÁ, Mattos-Jr D (2016) Scanning electron microscopy of leaf and petal cuts of citrus trees fertigated with two nitrogen sources. Citrus Research and Technology 37:218–225

    Google Scholar 

  • Puig S, Andrés-Colás N, García-Molina A, Peñarrubia L (2007) Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies: interactions and biotechnological applications. Plant, Cell & Environment 30:271–290

    CAS  Google Scholar 

  • Pustika AB, Subandiyah S, Holford P, Beattie GAC, Iwanami T, Masaoka Y (2008) Interactions between plant nutrition and symptom expression in mandarin trees infected with the disease Huanglongbing. Australasian Plant Disease Notes 3:112–115

    CAS  Google Scholar 

  • Quaggio JA, Mattos D Jr, Cantarella H, Stuchi ES, Sempionato OR (2004) Sweet orange trees grafted on selected rootstocks fertilized with nitrogen, phosphorus and potassium. Pesquisa Agropecuária Brasileira 39:55–60

    Google Scholar 

  • Quaggio JA, Souza TR, Zambrosi FCB, Boaretto RM, Mattos D Jr (2014) Nitrogen-fertilizer forms affect the nitrogen-use efficiency in fertigated citrus groves. Journal of Plant Nutrition and Soil Science 177:404–411

    CAS  Google Scholar 

  • Quaggio JA, Souza TR, Zambrosi FC, Mattos D Jr, Boaretto RM, Silva G (2019) Citrus fruit yield response to nitrogen and potassium fertilization depends on nutrient-water management system. Scientia Horticulturae 249:329–333

    CAS  Google Scholar 

  • Raghothama KG, Karthikeyan AS (2005) Phosphate acquisition. Plant and Soil 274:37–49

    CAS  Google Scholar 

  • Razi MF, Khan IA, Jaskani MJ (2011) Citrus plant nutritional profile in relation to Huanglongbing prevalence in Pakistan. Pakistan Journal of Agricultural Sciences 48:299–304

    Google Scholar 

  • Richardson AD, Carbone MS, Keenan TF, Czimczik CI, Hollinger DY, Murakami P, Schaberg PG, Xu X (2013) Seasonal dynamics and age of stem wood nonstructural carbohydrates in temperate forest trees. The New Phytologist 197:850–861

    CAS  PubMed  Google Scholar 

  • Saccini VAV, Dos Santos DMM, Medina CL, Machado RS, Cruz FJR (2014) Nutritional analysis of flowers from ‘Valencia’ orange trees infected with Huanglongbing. Proceedings IRCHLB III

  • Schneider H (1968) Anatomy of greening diseased sweet orange shoots. Phytopathology 58:1155–1160

    Google Scholar 

  • Schumann A, Waldo L, Vashisth T, Wright A, Morgan K (2019) Critical leaf nutrient thresholds to diagnose deficiencies in HLB trees. Citrus Industry 100:20–25

    Google Scholar 

  • Shen W, Cevallos-Cevallos JM, da Rocha UN, Arevalo HA, Stansly PA, Roberts DP, van Bruggen AHC (2013) Relation between plant nutrition, hormones, insecticide applications, bacterial endophytes and Candidatus Liberibacter Ct values in citrus trees infected with Huanglongbing. European Journal of Plant Pathology 137:727–742

    CAS  Google Scholar 

  • Silva JR, Alvarenga FV, Boaretto RM, Lopes JRS, Quaggio JA, Coletta-Filho HD, Mattos-Jr D (2020) Following the effects of micronutrient supply in HLB infected trees: plant responses and ‘Candidatus Liberibacter asiaticus’ acquisition by the Asian citrus psyllid. Tropical Plant Pathology. https://doi.org/10.1007/s40858-020-00370-9

  • Singerman (2019) The real cost of HLB in Florida. University of Florida, IFAS, Citrus Research and Education Center, Lake Alfred. Available at: https://crec.ifas.ufl.edu/media/crecifasufledu/economics/cost_manuscript_20190801.pdf. Accessed on October 28, 2019

  • Smith AM (2012) Starch in the Arabidopsis plant. Starch 61:421–434

    Google Scholar 

  • Spann TM, Schumann AW (2009) The role of plant nutrients in disease development with emphasis on citrus and Huanglongbing. Proceedings of the Florida State Horticultural Society 122:169–171

    Google Scholar 

  • Spann TM, Atwood RA, Dewdney MM, Ebel RC, Ehsani R, England G, Futch S, Gaver T, Hurner T, Oswalt C, Rogers ME, Roka FM, Ritenour MA, Zekri MIFAS (2010) Guidance for huanglongbing (greening) management. Available at: www.agnetonlinecom/documents/02-26-10-uf-ifashlb-guidepdf. Accessed on September 28, 2018

  • Stamp N (2003) Theory of plant defensive level: example of process and pitfalls in development of ecological theory. Oikos 102:672–678

    Google Scholar 

  • Stansly P, Kostyk B (2013) Soil applied systemic insecticides for control of asian citrus psyllid in newly planted citrus trees. In: 3rd international Conference on Huanglongbing. Orlando. Proceedings IRCHLB III

    Google Scholar 

  • Stansly PA, Arevalo HA, Qureshi JA, Jones MM, Hendricks K, Roberts PD, Roka FM (2013) Vector control and foliar nutrition to maintain economic sustainability of bearing citrus in Florida groves affected by huanglongbing. Pest Management Science 70:415–426

    PubMed  Google Scholar 

  • Stettler M, Eicke S, Mettler T, Messerli G, Hortensteiner S, Zeeman SC (2009) Blocking the metabolism of starch breakdown products in Arabidopsis leaves triggers chloroplast degradation. Molecular Plant 2:1233–1246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stonebloom S, Brunkard JO, Cheung AC, Jiang K, Feldman L, Zambryski P (2012) Redox states of plastids and mitochondria differentially regulate intercellular transport via plasmodesmata. Plant Physiology 158:190–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stover ED, McCollum G (2011) Incidence and severity of huanglongbing and Candidatus Liberibacter asiaticus titer among field-infected citrus cultivars. HortScience 46:1344–1348

    Google Scholar 

  • Stover E, Shatters R, Jr McCollum G, Hall DG, DuanY (2010) Evaluation of Candidatus Liberibacter asiaticus titer in field-infected trifoliate cultivars: preliminary evidence for HLB resistance. Proceedings of the Florida State Horticultural Society 123:115–117

    Google Scholar 

  • Stuckens J (2010) Monitoring and modeling of a citrus plant production system via integration of in-situ and hyperspectral remote sensing data. Katholieke Universiteit Leuven. PhD Thesis, 201 p

  • Tanaka S, Doi Y (1974) Studies on mycoplasma-like organisms suspected cause of citrus likubin and leaf mottling. Bulletin of the Faculty of Agriculture, Tamagawa University 14:64–70

    Google Scholar 

  • Tang L, Chhajed S, Vashisth T (2019) Preharvest fruit drop in huanglongbing-affected ‘Valencia’ sweet orange. Journal of the American Society for Horticultural Science 144:107–117

    CAS  Google Scholar 

  • Tian S, Lu L, Labavitch JM, Webb SM, Yang X, Brown PH, He Z (2014) Spatial imaging of Zn and other elements in huanglongbing-affected grapefruit by synchrotron-based micro X-ray fluorescence investigation. Journal of Experimental Botany 65:953–964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timmer LW, Bové J, Ayres AJ, Bassanezi RB, Belasque J Jr, Chamberlain HL, Dawson WO, Dewdney MM, Graham JH, Irey M (2011) HLB: it’s not too late yet. Citrus Industry 92:6–7

    Google Scholar 

  • Tirtawidjaja S, Hadewidjaja T, Lasheen AM (1965) Citrus vein phloem degeneration virus, a possible cause of citrus chlorosis in Java. Proceedings of the American Society for Horticultural Science 86:235–243

    CAS  Google Scholar 

  • Trivedi P, Trivedi C, Grinyer J, Anderson IC, Singh BK (2016) Harnessing host–vector microbiome for sustainable plant disease management of phloem-limited bacteria. Frontiers in Plant Science 30:1423

    Google Scholar 

  • Underwood W (2012) The plant cell wall: a dynamic barrier against pathogen invasion. Frontiers in Plant Science 3:1–6

    Google Scholar 

  • Vashisth T, Grosser J (2018) Comparison of controlled release fertilizer (CRF) for newly planted sweet orange trees under Huanglongbing prevalent conditions. Journal of Horticulture 5:2376–0354

    Google Scholar 

  • Vashisth T, Livingston T (2019) Assessment of pruning and controlled-release fertilizer to rejuvenate huanglongbing-affected sweet orange. HortTechnology 1:1–8

    Google Scholar 

  • Vashisth T, Vincent C (2018) Living with yellow dragon disease. Citrus Industry 99:10–13

    Google Scholar 

  • Walters DR, Bingham IJ (2007) Influence of nutrition on disease development caused by fungal pathogens: implications for plant disease control. The Annals of Applied Biology 151:307–324

    CAS  Google Scholar 

  • Westbrook CJ, Hall DG, Stover E, Duan YP, Lee RF (2011) Colonization of citrus and citrus-related germplasm by Diaphorina citri (Hemiptera: Psyllidae). Hortscience 46:997–1005

    Google Scholar 

  • Wu SP, Faan HC (1988) Recent research on citrus yellow shoot in Guangdong Province. Proceedings FAO-UNDP Greening Workshop

  • Xu MR, Liang MD, Chen JC, Xia YL, Zheng Z, Zhu Q, Deng XL (2013) Preliminary research on soil conditioner mediated citrus Huanglongbing mitigation in the field in Guangdong, China. European Journal of Plant Pathology 137:283–293

    Google Scholar 

  • Xu J, Zhang Y, Zhang P, Trivedi P, Riera N, Wang Y, Liu X, Fan G, Tang J, Coletta-Filho HD, Cubero J, Deng X, Ancona V, Lu Z, Zhong B, Roper MC, Capote N, Catara V, Pietersen G, Vernière C, Al-Sadi AM, Li L, Yang F, Xu X, Wang J, Yang H, Jin T, Wang N (2018) The structure and function of the global citrus rhizosphere microbiome. Nature Communications 9:4894

    PubMed  PubMed Central  Google Scholar 

  • Yuan M, Chu ZH, Li XH, Xu CG, Wang SP (2010) The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell 22:3164–3176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zambon FT, Kadyampakeni DM, Grosser JW (2019) Ground application of overdoses of manganese have a therapeutic effect on sweet orange trees infected with Candidatus Liberibacter asiaticus. Hortscience 54:1077–1086

    CAS  Google Scholar 

  • Zambrosi FB, MattosJr D, Boaretto RM, Quaggio JA, Muraoka T (2012a) Contribution of phosphorus (32P) absorption and remobilization for citrus growth. Plant and Soil 355:353–362

    CAS  Google Scholar 

  • Zambrosi FCB, Mattos-Jr D, Furlani PR, Quaggio JA, Boaretto RM (2012b) Eficiência de absorção e utilização de fósforo em porta-enxertos cítricos. Revista Brasileira de Ciência do Solo 36:485–496

    CAS  Google Scholar 

  • Zanardi OZ, Volpe HXL, Favaris AP, Silva WD, Luvizotto RAG, Magnani RF, Esperança V, Delfino JY, Freitas R, Miranda MP, Parra JRP, Bento JMS, Leal WS (2018) Putative sex pheromone of the Asian citrus psyllid, Diaphorina citri, breaks down into an attractant. Scientific Reports 8:455

    PubMed  PubMed Central  Google Scholar 

  • Zeeman SC, Smith SM, Smith AM (2007) The diurnal metabolism of leaf starch. The Biochemical Journal 401:13–28

    CAS  PubMed  Google Scholar 

  • Zhang MQ, Guo Y, Powell CA, Doud MS, Yang CY, Zhou H, Duan YP (2016) Zinc treatment increases the titre of ‘Candidatus Liberibacter asiaticus’ in huanglongbing-affected citrus plants while affecting the bacterial microbiomes. Journal of Applied Microbiology 120:1616–1628

    CAS  PubMed  Google Scholar 

  • Zhang Y, Xu J, Riera N, Jin T, Li J, Wang N (2017) Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Microbiome 5:97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Sun R, Albrecht U, Padmanabhan C, Wang A, Coffey MD, Girke T, Wang Z, Close TJ, Roose M, Yokomi RK (2013) Small RNA profiling reveals phosphorus deficiency as a contributing factor in symptom expression for citrus Huanglongbing disease. Molecular Plant 6:301–310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng ZL, Zhao Y (2013) Transcriptome comparison and gene coexpression network analysis provide a system view of citrus response to ‘Candidatus Liberibacter asiaticus’ infection. BMC Genomics 14:27

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We also thank the National Council for Scientific and Technological Development (CNPq), which granted D.M.J. and R.M.B. fellowships.

Funding

The received financial support for this publication from the São Paulo Research Foundation (FAPESP, grants #2015/13572-8 and #2018/14893-0).

Author information

Authors and Affiliations

Authors

Contributions

DMJ and JRS conducted the conceptualization of the manuscript and the major literature review. The first draft of the manuscript was written by DMJ and JRS, and DK, TV, and RMB critically revised and commented new versions of the manuscript, who also approved the final manuscript. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Corresponding author

Correspondence to Dirceu Mattos-Jr.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattos-Jr, D., Kadyampakeni, D.M., da Silva, J.R. et al. Reciprocal effects of huanglongbing infection and nutritional status of citrus trees: a review. Trop. plant pathol. 45, 586–596 (2020). https://doi.org/10.1007/s40858-020-00389-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-020-00389-y

Keywords

Navigation