Skip to main content
Log in

Spatial distribution of avocado branch dieback and wilting (ABDW) vectored by ambrosia beetles in the Caribbean South America

  • Original Article
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

Avocado Branch Dieback and Wilting (ABDW) was recently reported on West-Indian avocado (Persea americana var. americana) orchards in the Serrania de Perija, Colombia. This disease is caused by Bionectria pseudochroleuca and transmitted by ambrosia beetles. In this work we estimated the potential distribution of ABDW to map avocado-growing areas at risk of ABDW in Colombia and Venezuela. Disease occurrence records were obtained from pest and disease surveys undertaken during 2014–2015 period in the avocado-growing areas of the Colombian Caribbean. The correlative maximum entropy-based model (MaxEnt) algorithm was used to assess the potential distribution of ABDW in the Caribbean South America. The MaxEnt model predicted locations with potential distribution for ABDW disease in tropical dry forest biomes of Colombia and Venezuela. The largest producing avocado areas in these locations are Serrania de Perija (Colombia) and Serranía de Mérida (Venezuela). Field reports from these locations confirm the presence of avocado trees with symptoms of wilting and branch dieback in association with ambrosia beetles. Isothermality, mean diurnal range in temperature and precipitation of the wettest month were the variables with the highest contribution and importance to the spatial distribution model of ABDW disease. A potential distribution map of the ABDW disease for the Caribbean South America was proposed together with an explanatory hypothesis for disease occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen HF, Jordal BH, Kambestad M, Kirkendall LR (2012) Improbable but true: the invasive inbreeding ambrosia beetle Xylosandrus morigerus has generalist genotypes. Ecology and Evolution 2:247–257

    PubMed  PubMed Central  Google Scholar 

  • Arcila Cardona A, Burbano-Figueroa O (2014) Inventario de plagas y enfermedades del aguacate en la Costa Caribe (CORPOICA, Ed.). Corporación Colombiana de Investigación Agropecuaria

  • Atkinson TH (2018) Xyleborus volvulus (F. 1775). Bark and Ambrosia Beetles

  • Aular J, Casares M (2011) Consideraciones sobre la producción de frutas en Venezuela. Revista Brasileira de Fruticultura 33:187–198

    Google Scholar 

  • Avilán L, Rodríguez M, Carreño R, Dorantes I (1994) Selección de variedades de aguacate. Agronomía Tropical.

  • Barton C, Bates C, Cutrer B, Eickwort J, Harrington S, Jenkins D, Stones D, Reid L, Riggins JJ, Trickel R (2016) Distribution of Counties with Laurel wilt Disease by Year of Initial Detection. USDA

  • Bateman C, Huang Y-T, Simmons DR, Kasson MT, Stanley EL, Hulcr J (2017) Ambrosia beetle Premnobius cavipennis (Scolytinae: Ipini) carries highly divergent ascomycotan ambrosia fungus, Afroraffaelea ambrosiae gen. nov. et sp. nov. (Ophiostomatales). Fungal Ecology 25:41–49

    Google Scholar 

  • Benavides M (1961) El Xyleborus morigerus Blandford en Colombia. Revista Cenicafé arc 12:17–28

    Google Scholar 

  • Blach-Overgaard A, Svenning J-C, Dransfield J, Greve M, Balslev H (2010) Determinants of palm species distributions across Africa: the relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography 33:380–391

    Google Scholar 

  • Burbano-Figueroa O (2019) West Indian avocado agroforestry systems in Montes de María (Colombia): a conceptual model of the production system. Revista Chapingo. Serie: Horticultura 25:75–102

    Google Scholar 

  • Burbano-Figueroa O, Arcila A, Vasquez AM, Carrascal F, Salazar K, Moreno M, Romero F J, Pulgarin JA (2017) First report of Bionectria pseudochroleuca causing dieback and wilting on avocado in the Serrania de Perijá, Colombia. Plant Disease 102

  • CABI (2018a) Xylosandrus morigerus (brown twig beetle). Centre for Agriculture and Bioscience International. Invasive Species Compendium

  • CABI (2018b) Xyleborus volvulus. Centre for Agriculture and Bioscience International

  • Carrillo D, Duncan RE, Peña JE (2012) Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) that breed in avocado wood in Florida. Florida Entomologist 95:573–579

    Google Scholar 

  • Carrillo D, Duncan RE, Ploetz JN, Campbell AF, Ploetz RC, Peña JE (2014) Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathology 63:54–62

    Google Scholar 

  • Carrillo D, Cruz LF, Kendra PE, Narvaez TI, Montgomery WS, Monterroso A, De Grave C, Cooperband MF (2016) Distribution, Pest Status and Fungal Associates of Euwallacea nr. fornicatus in Florida Avocado Groves. Insects 7:2–11

    Google Scholar 

  • Castro Villares JJ (2018) Escolítidos asociados en árboles de Tectona Grandis L.F. (teca) enfermos con marchitez vascular y muerte en la provincia de Los Ríos, año 2018

  • Cognato AI (2013) Molecular phylogeny and taxonomic review of Premnobiini Browne, 1962 (Coleoptera: Curculionidae: Scolytinae). Frontiers in Ecology and Evolution 1:1–12

    Google Scholar 

  • Core Team R (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Dann EK, Parkinson LE (2017) Three “other” diseases impacting avocado productivity in Australia. South African Avocado Growers’ Association 40, 24–27

  • Duno de Stefano R, Aymard G, Riina R, Huber O (2006) Flora and vegetation of the venezuelan llanos: A review. In: Toby Pennington R, Lewis G, Ratter J (eds) Systematics association special volumes. Neotropical savannas and seasonally dry forests: plant diversity, biogeography, and conservation. CRC Press, 95–120

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMCM, Peterson AT, Phillips SJ, Richardson K, Scachetti‐Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Google Scholar 

  • Elith J, Phillips S, Hastie T, Dudík M, Chee Y, Yates C (2011) TITLE: a statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17:43–57

    Google Scholar 

  • EPPO (2018) Xylosandrus morigerus (XYLSMO). EPPO Global Data Base

  • Escobar LE, Craft ME (2016) Advances and limitations of disease biogeography using ecological niche modeling. Frontiers in Microbiology 7:1–21

    Google Scholar 

  • Eskalen A, Stouthamer R, Lynch SC, Rugman-Jones PF, Twizeyimana M, Gonzalez A, Thibault T (2013) Host range of Fusarium dieback and its ambrosia beetle (coleoptera: scolytinae) vector in southern California. Plant Disease 97:938–951

    PubMed  Google Scholar 

  • Freeman S, Protasov A, Sharon M, Mohotti K, Eliyahu M, Okon-Levy N, Maymon M, Mendel Z (2012) Obligate feed requirement of Fusarium sp. nov., an avocado wilting agent, by the ambrosia beetle Euwallacea aff. fornicata. Symbiosis (Philadelphia, Pa.) 58, 245–251

  • Freeman S, Miller G, Protasov A, Maymon M, Elazar M, David-Schwartz R, Zhou J, Mendel Z (2019) Aposymbiotic interactions of three ambrosia beetle fungi with avocado trees. Fungal Ecology 39:117–130

    Google Scholar 

  • Gaitán AL, Cristancho MA, Castro Caicedo BL, Rivillas CA, Gómez GC (Eds.) (2016) PART II: pests. Compendium of coffee diseases and pests. The American Phytopathological Society, 45–60

  • Geering A (2013) Biosecurity capacity building for the Australian avocado industry: Laurel wilt . Horticulture Australia Ltd, 1–27

  • Giraldo M, Benavides P, Constantino L (2015) Conozca al pasador de las ramas del café: Un insecto plaga ocasional en Colombia

  • Gohli J, Selvarajah T, Kirkendall LR, Jordal BH (2016) Globally distributed Xyleborus species reveal recurrent intercontinental dispersal in a landscape of ancient worldwide distributions. BMC Evolutionary Biology 16:37

    PubMed  PubMed Central  Google Scholar 

  • Goitía W, Rosales CJ (2001) Relación entre la incidencia de escolítidos y la necrosis del cacao en Aragua, Venezuela. Manejo Integrado de Plagas, 65–71

  • González-M R, García H, Isaacs P, González-M R, García H, Isaacs P, Cuadros H, López-Camacho R, Rodríguez N, Pérez K, Mijares F, Castaño-Naranjo A, Jurado R, Idárraga-Piedrahíta Á, Rojas A, Vergara H, Pizano C (2018) Disentangling the environmental heterogeneity, floristic distinctiveness and current threats of tropical dry forests in Colombia. Environmental Research Letters 13:1–10

    Google Scholar 

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815

    Google Scholar 

  • Hijmans R, Elith J (2016) Species distribution modeling with R

  • Hijmans RJ, Phillips S, Leathwick J, Elith J (2017) Package “dismo.” Circles

  • Hughes MA, Smith JA, Ploetz RC, Kendra PE, Mayfield AE, Hanula JL, Hucr J, Stelinski L, Cameron S, Riggins JJ, Carillo D, Rabaglia RJ, Eickwort J, Pernas A (2015) Recovery Plan for Laurel Wilt on Redbay and Other Forest Species Caused by Raffaelea lauricola and Disseminated by Xyleborus glabratus. Plant Health Progress 16:173–210

    Google Scholar 

  • Hulcr J, Dunn RR (2011) The sudden emergence of pathogenicity in insect-fungus symbioses threatens naive forest ecosystems. Proceedings. Biological Sciences / the Royal Society 278:2866–2873

    Google Scholar 

  • Hulcr J, Stelinski LL (2017) The ambrosia symbiosis: from evolutionary ecology to practical management. Annual Review of Entomology 62:285–303

    CAS  PubMed  Google Scholar 

  • IAVH (1998) El bosque seco tropical (Bs-T) en Colombia. Instituto Alexander von Humboldt - Programa de Inventario de la Biodiversidad - Grupo de Exploraciones y Monitoreo Ambiental GEMA, Bogotá

    Google Scholar 

  • ICA (2002) Frutales tropicales potenciales para el Pie de Monte Llanero . Villavicencio, Meta, Colombia: Instituto Colombiano Agropecuario

  • ITIS (2019a) Xyleborus volvulus (Fabricius, 1775). ITIS Report

  • ITIS (2019b) Premnobius cavipennis, Eichhoff 1878. ITIS S Report

  • Jaramillo MG, Benavides P, Constantino LM (2015) El pasador de las ramas del café Xylosandrus morigerus (Coleoptera: Curculionidae: Scolytinae). Unpublished, 1–6

  • Kasson MT, O’Donnell K, Rooney AP, Sink S, Ploetz RC, Ploetz JN, Konkol JL, Carrillo D, Freeman S, Mendel Z, Smith JA, Black AW, Hulcr J, Bateman C, Stefkova K, Campbell PR, Geering AD, Dann EK, Eskalen A, Mohotti K, Short DP, Aoki T, Fenstermacher KA, Davis DD, Geiser DM (2013) An inordinate fondness for Fusarium: phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts. Fungal Genetics and Biology 56:147–157

    PubMed  Google Scholar 

  • Kendra PE, Montgomery WS, Niogret J, Epsky ND (2013) An uncertain future for American Lauraceae: a lethal threat from redbay ambrosia beetle and laurel wilt disease (a review). American Journal of Polymer Science 04:727–738

    Google Scholar 

  • Kimmerer TW, Kozlowski TT (1982) Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress. Plant Physiology 69:840–847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kostovcik M, Bateman CC, Kolarik M, Stelinski LL, Jordal BH, Hulcr J (2015) The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. The ISME Journal 9:1–13

    Google Scholar 

  • Kühnholz S, Borden JH, Uzunovic A (2001) Secondary ambrosia beetles in apparently healthy trees: adaptations, potential causes and suggested research. Integrated Pest Management Reviews 6:209–219

    Google Scholar 

  • Kumar S, Neven LG, Yee WL (2014) Evaluating correlative and mechanistic niche models for assessing the risk of pest establishment. Ecosphere 5, art86

  • Linares-Palomino R, Oliveira-Filho AT, Pennington RT (2011) Neotropical seasonally dry forests: diversity, endemism, and biogeography of woody plants. In: Dirzo R, Young HS, Mooney HA, Ceballos G (eds) Seasonally dry tropical forests. Washington, DC: Island Press/Center for Resource Economics, 3–21, Neotropical Seasonally Dry Forests: Diversity, Endemism, and Biogeography of Woody Plants

  • Linnakoski R, Forbes KM (2019) Pathogens-the hidden face of forest invasions by wood-boring insect pests. Frontiers in Plant Science 10:1–5

    Google Scholar 

  • MADR (2014) Estado Actual y Perspectivas de la cadena del aguacate en Colombia. Valle del Cauca, Colombia: Ministerio de Agricultura y Desarrollo Rural - Colombia

  • MADR, Gobernación del Cauca, FNFH, ASOHOFRUCOL, SAG (2006) Desarrollo de la Fruticultura en el Cauca. Ministerio de Agricultura y Desarrollo Rural - Colombia, Popayan

    Google Scholar 

  • Martínez M, Castro J, Villamar R, Carranza M, Muñoz J, Jiménez E, Guachambala M, Heredia M, Garcia L, Mehdi S (2017) Evaluation of the diversity of Scolitids (Coleoptera: Curculionidae) in the forest plantations of the central zone of the Ecuadorian littoral. Ciencia y Tecnología 10:25–32

    Google Scholar 

  • Martínez M, Cognato AI, Guachambala M, Boivin T (2019) Bark and ambrosia beetle (coleoptera: curculionidae: scolytinae) diversity in natural and plantation forests in Ecuador. Environmental Entomology 20:1–11

    Google Scholar 

  • Mejia Hernandez AE (2011) Cadena productiva del aguacate

  • Mendel Z, Freeman S (2011) The current situation of ‘ambrosia wilt’ in avocado plantations in Israel caused by the shot hole borer and its fungal symbiont Fusarium. California Avocado Society 94:127–136

    Google Scholar 

  • Mendel Z, Protasov A, Sharon M, Zveibil A, Yehuda SB, O’Donnell K, Rabaglia R, Wysoki M, Freeman S (2012) An Asian ambrosia beetle Euwallacea fornicatus and its novel symbiotic fungus Fusarium sp. pose a serious threat to the Israeli avocado industry. Phytoparasitica 40:235–238

    Google Scholar 

  • Navarro R, Liendo R (2010) Fluctuación poblacional de Scolytidae (Insecta: Coleoptera) en cacao del estado Aragua, Venezuela. Agronomía Tropical 60:255–261

    Google Scholar 

  • Olalla Zambrano JL (2018) Escolítidos asociados en árboles Tectona grandis L.f. (teca) enfermos con marchitez vascular y muerte regresiva en la provincia de Santo Domingo de los Tsáchilas, año 2018

  • Olson DM, Dinerstein E, Wikramanayake ED, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D'amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: A new map of fife on earth. BioScience 51:933–938

    Google Scholar 

  • Phillip SJ, Anderson RP, Schapire RE (2005) Maximum entropy modeling of species geographic distributions. Ecological Modelling:231–259

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. Twenty-first international conference on Machine learning - ICML ‘04. New York, New York, USA: ACM Press, 83

  • Pizano C, Cabrera M, García H (2014) Bosque seco tropical en Colombia; generalidades y contexto. El Bosque Seco Tropical en Colombia

  • Ploetz R, Kendra P, Choudhury R, Rollins J, Campbell A, Garrett K, Hughes M, Dreaden T (2017b) Laurel wilt in natural and agricultural ecosystems: understanding the drivers and scales of complex pathosystems. Forests 8:48

    Google Scholar 

  • Ploetz RC, Pérez-Martínez JM, Smith JA, Hughes M, Dreaden TJ, Inch SA, Fu Y (2012) Responses of avocado to laurel wilt, caused by Raffaelea lauricola. Plant Pathology 61:801–808

    Google Scholar 

  • Ploetz RC, Hulcr J, Wingfield MJ, de Beer ZW (2013) Destructive tree diseases associated with Ambrosia and bark beetles: black swan events in tree pathology? Plant Disease 97:856–872

    PubMed  Google Scholar 

  • Ploetz RC, Hughes MA, Kendra PE, Hughes MA, Kendra PE, Fraedrich SW, Carrillo D, Stelinski LL, Hulcr J, Mayfield AE III, Dreaden TJ, Crane JH, Evans EA, Schaffer BA, Rollins JA (2017a) Recovery Plan for Laurel Wilt of Avocado, Caused byRaffaelea lauricola. Plant Health Progress 18:51–77

    Google Scholar 

  • Ploetz RC, Konkol JL, Narvaez T, Duncan RE, Saucedo RJ, Campbell A, Mantilla J, Carrillo D, Kendra PE (2017c) Presence and Prevalence of Raffaelea lauricola, Cause of Laurel Wilt, in Different Species of Ambrosia Beetle in Florida, USA. Journal of Economic Entomology 110:347–354

    PubMed  Google Scholar 

  • Ranger CM, Reding ME, Persad AB, Herms DA (2010) Ability of stress-related volatiles to attract and induce attacks by Xylosandrus germanus and other ambrosia beetles. Agricultural and Forest Entomology 12:177–185

    Google Scholar 

  • Ranger CM, Reding ME, Schultz PB, Oliver JB (2012) Ambrosia beetle (Coleoptera: Curculionidae) responses to volatile emissions associated with ethanol-injected Magnolia virginiana. Environmental Entomology 41:636–647

    CAS  PubMed  Google Scholar 

  • Ranger CM, Biedermann PHW, Phuntumart V, Biedermann PHW, Phuntumart V, Beligala GU, Ghosh S, Palmquist DE, Mueller R, Barnett J, Schultz PB, Reding ME, Benz JP (2018) Symbiont selection via alcohol benefits fungus farming by ambrosia beetles. Proceedings of the National Academy of Sciences of the United States of America 115:4447–4452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reina-Rodríguez GA, Rubiano Mejía JE, Castro Llanos FA, Soriano I (2017) Orchids distribution and bioclimatic niches as a strategy to climate change in areas of tropical dry forest in Colombia. Lankesteriana: la revista cientifica del Jardin Botanico Lankester, Universidad de Costa Rica 17, 17–47

  • Rios F, Ruiz A, Lecaro J, Rehpani C (2017) Estrategias país para la oferta de cacaos especiales. Fundación Swisscontact, Bogotá, D.C.

    Google Scholar 

  • Rodríguez G, Leal F, Naranjo B (2012) Situación actual de los cultivos frutales de mayor importancia en Venezuela. Revista de la Facultad de Agronomía Universidad Central de Venezuela

  • Rodriguez Henao E, Caicedo Arana Á, Enriquez Valencia AL, Muñoz Florez JE (2016) Evaluation of tolerance to Phytophthora cinnamomi Rands in avocado germplasm Persea americana Miller. Acta Agronómica 66

  • Rojas Chapin JD (2018) Escolitidos asociados en árboles de Tectona grandis L. f. (teca) enfermos con marchitez vascular y muerte regresiva en la provincia del Guayas, año 2018

  • Rondón A, Guevara Y (1984) Algunos aspectos relacionados con la muerte regresiva del aguacate (Persea americana Mill). Agronomía Tropical 34:119–129

    Google Scholar 

  • Sandoval Rodríguez C, Cognato AI, Righi CA (2017) Bark and ambrosia beetle (Curculionidae: Scolytinae) diversity found in agricultural and fragmented forests in Piracicaba-SP, Brazil. Environmental Entomology 46:1254–1263

    PubMed  Google Scholar 

  • Schabel HG (2006) Forest Entomology in East Africa: Forest Insects of Tanzania. Springer Science & Business Media

  • Seidl R, Rammer W (2017) Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landscape Ecology 32:1485–1498

    PubMed  Google Scholar 

  • Valencia Merchán SL (2018) Escolítidos asociados en árboles de Tectona grandis L.f. enfermos con marchitez vascular y muerte regresiva en la provincia de Esmeraldas, año 2018

  • Vanderpool D, Bracewell RR, McCutcheon JP (2018) Know your farmer: ancient origins and multiple independent domestications of ambrosia beetle fungal cultivars. Molecular Ecology 27:2077–2094

    PubMed  Google Scholar 

  • Vélez Angel R (1972) Aguacate y sauce: Nuevos hospederos del pasador del cafeto, Xylosandrushttp://f1000.com/work/bibliography/5742686(Xyleborus) morigerus (Bland). Revista Facultad Nacional de Agronomía

  • Waller JM, Bigger M, Hillocks RJ (2007) Coffee pests, diseases and their management. CABI, Wallingford

    Google Scholar 

  • Wingfield MJ, Barnes I, de Beer ZW, Roux J, Wingfield BD, Taerum SJ (2017) Novel associations between ophiostomatoid fungi, insects and tree hosts: current status and future prospects. Biological Invasions, 1–14

  • Wood SL (2009) Bark and ambrosia beetles of south America (coleoptera, scolytidae). Entomological Review 89:245–246

    Google Scholar 

  • Wood SL (2015) Introduced and exported americans Scolytidaehttp://f1000.com/work/bibliography/7389822(Coleoptera). Great Basin Naturalist 37:67–74

    Google Scholar 

  • Wuest CE, Harrington TC, Fraedrich SW, Yun H-Y, Lu S-S (2017) Genetic variation in native populations of the laurel wilt pathogen, Raffaelea lauricola, in Taiwan and Japan and the introduced population in the United States. Plant Disease 101:619–628

    PubMed  Google Scholar 

  • WWF (2019) Northern South America: Colombia and Venezuela. World Wildlife Fund - Endangered Species Conservation

  • Zambrano Barcos CL (2016) Diversidad de insectos scolytinae del bosque Protector Pedro Franco Dávila del Recinto Jauneche, Cantón Palenque, año 2015

  • Zambrano Morrillo LA (2016) Diferencias en la diversidad de insectos coleoptera: curculionidae, scolytinae en la formación primaria y secundaria del bosque protector murocomba, cantón Valencia, Provincia Los Ríos, año 2015

Download references

Acknowledgements

This research was supported by CORPOICA (Corporación Colombiana de Investigación Agropecuaria) and the Colombian Ministry of Agriculture and Rural Development (MADR) under the projects: 1. Inventario de plagas y enfermedades del aguacate en la Costa Caribe (Fase 1) (Grant Number: C05174 12104430011810S3) and 2. Identificación de patógenos asociados a la marchitez del aguacate. Procesamiento de muestras de Phytophthora sp. y Raffaelea sp. para confirmación de identificación por análisis molecular (Grant Number: C06759). Turipaná Research Center and Caribia Research Center provided logistical support. AVAnalytics provided database and electronic notebooks maintenance and statistical / GIS analysis. CORPOICA changed its trade name to AGROSAVIA in mid-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Burbano-Figueroa.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burbano-Figueroa, O., Osorio-Almanza, L. & Cardona, A.M.A. Spatial distribution of avocado branch dieback and wilting (ABDW) vectored by ambrosia beetles in the Caribbean South America. Trop. plant pathol. 45, 363–375 (2020). https://doi.org/10.1007/s40858-020-00352-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-020-00352-x

Keywords

Navigation