Skip to main content
Log in

Resistance of apple leaves to infection by Colletotrichum fructicola acts independently of hypersensitive reaction and PR-1 and PR-10 gene expression

  • Original Article
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

Colletotrichum fructicola is currently one of the most important fungal pathogens affecting apple production in the subtropics. This work was aimed at studying the resistance mechanisms of apple leaves during early stages of pathogen infection. Seedlings from ‘Fuji’ × ‘Gala’ crosses, resulting in resistant and susceptible plants (1:1) were used in an assay model. Disease severity reached 19% on susceptible plants at 7 days after inoculation with C. fructicola. Enzymatic activity of ascorbate peroxidase, guaiacol peroxidase, and superoxide dismutase were similar between resistant and susceptible leaves, whereas glutathione reductase activity was enhanced in inoculated resistant plants. Hydrogen peroxide (H2O2) leaf content showed a decrease only in inoculated resistant leaves at 12 h after inoculation (hai). H2O2 accumulation associated with the hypersensitive reaction (HR) was observed at a low frequency (ca. one reaction in 3000 penetration attempts) in resistant leaves. Pathogenesis-related 1 (PR-1) gene expression was not affected by inoculation with C. fructicola up to 48 hai. Whereas PR-10 gene expression was significantly increased in leaves of both genotypes at 24 and 48 hai. Results suggest that the monogenic recessive resistance of apple to GLS acts independently of HR and both PR-1 and PR-10 genes expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acevedo-Garcia J, Kusch S, Panstruga R (2014) Magical mystery tour: MLO proteins in plant immunity and beyond. New Phytologist 204:273–281

    Article  CAS  Google Scholar 

  • Araújo L, Stadnik MJ (2013) Cultivar-specific and ulvan-induced resistance of apple plants to Glomerella leaf spot are associated with enhanced activity of peroxidases. Acta Scientarum 35:287–293

    Google Scholar 

  • Araújo L, Stadnik MJ, Borsato LC, Valdebenito-Sanhueza RM (2008) Fosfito de potássio e ulvana no controle da mancha foliar da gala em macieira. Tropical Plant Pathology 33:148–152

    Article  Google Scholar 

  • Araújo L, Gonçalves AE, Stadnik MJ (2014) Ulvan effect on conidial germination and appressoria formation of Colletotrichum gloeosporioides. Phytoparasitica 42:631

    Article  CAS  Google Scholar 

  • Birker D, Heidrich K, Takahara H, Narusaka M, Deslandes L, Narusaka Y, Reymond M, Parker JE, O’Connell R (2009) A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions. The Plant Journal 60:602–613

    Article  CAS  PubMed  Google Scholar 

  • Bonasera JM, Kim JF, Beer SV (2006) PR genes of apple: identification and expression in response to elicitors and inoculation with Erwinia amylovora. BMC Plant Biology 6:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bringe K, Schumacher CFA, Schmitz-Eiberger M, Steiner U, Oerke E-C (2006) Ontogenetic variation in chemical and physical characteristics of adaxial apple leaf surfaces. Phytochemistry 67:161–170

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Liang J, Zhang C, Rodrigues Jr CJ (2006) Epicatechin and catechin may prevent coffee berry disease by inhibition of appressorial melanization of Colletotrichum kahawe. Biotechnology Letters 28:1637–1640

    Article  CAS  PubMed  Google Scholar 

  • Collinge DB (2009) Cell wall appositions: the first line of defence. Journal of Experimental Botany 60:351–352

    Article  CAS  PubMed  Google Scholar 

  • Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents 26:343–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dantas ACM, Silva MF, Nodari RO (2009) Genetic advances in the control of apple diseases. In: Stadnik MJ (ed) Manejo integrado de doenças da macieira. Florianópolis, Brazil, pp 127–152

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biology 3:REVIEWS3004

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong X (1998) SA, JA, ethylene and disease resistance in plants. Current Opinion in Plant Biology 1:316–323

    Article  CAS  PubMed  Google Scholar 

  • Elavarthi S, Martin B (2010) Spectrophotometric assays for antioxidant enzymes in plants. Methods in Molecular Biology 639:273–281

    Article  CAS  PubMed  Google Scholar 

  • Esfandiari E, Shokrpour M, Alavi-Kia S (2010) Effect of Mg deficiency on antioxidant enzymes activities and lipid peroxidation. Journal of Agricultural Science 2:131–136

  • Furlan CRC, Dantas ACM, Denardi F, Becker WF, Mantovani A (2010) Genetic resistance of accesses of apple tree germplasm bank from Epagri to gala leaf spot of Glomerella (Colletotrichum gloeosporioides). Revista Brasileira de Fruticultura 32:507–514

    Article  Google Scholar 

  • Gambino G, Perrone I, Gribaudo I (2008) A rapid and effective method for RNA extraction from different tissue of grapevine and other woody plants. Phytochemical Analysis 19:520–525

    Article  CAS  PubMed  Google Scholar 

  • Gan P, Ikeda K, Irieda H, Narusaka M, O'Connell RJ, Narusaka Y, Shirasu K (2013) Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytologist 197:1236–1249

    Article  CAS  Google Scholar 

  • Gau AE, Koutb M, Piotrowski M, Kloppstech K (2004) Accumulation of pathogenesis-related proteins in the apoplast of a susceptible cultivar of apple (Malus domestica cv. Elstar) after infection by Venturia inaequalis and constitutive expression of PR genes in the resistant cultivar Remo. European Journal of Plant Pathology 110:703–711

    Article  CAS  Google Scholar 

  • Gusberti M, Gessler C, Broggini GAL (2013) RNA-Seq analysis reveals candidate genes for ontogenic resistance in Malus-Venturia pathosystem. PLoS One 8:e78457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain S, Kumar A (2015) The pathogenesis related class 10 proteins in plant defense against biotic and abiotic stresses. Advanced Plants Agricultural Research 3. (1):00077

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jwa NS, Agrawal GK, Rakwal R, Park CH, Agrawal VP (2001) Molecular cloning and characterization of a novel jasmonate inducible pathogenesis-related class 10 protein gene, JIOsPR10, from rice (Oryza sativa L.) seedlings leaves. Biochemical and Biophysical Research Communications 286:973–983

    Article  CAS  PubMed  Google Scholar 

  • Katsurayama Y, Tsuchiya S, Boneti JIS (2001) Inheritance of resistance of the apple tree to leaf spot of gala (Colletotrichum gloeosporioides). Fitopatologia Brasileira 26:409–410

    Google Scholar 

  • Kürkcüoglu S, Degenhardt J, Lensing J, Al-Masri AB, Gau AE (2007) Identification of differentially expressed genes in Malus domestica after application of the non-pathogenic bacterium Pseudomonas fluorescens Bk3 to the phyllosphere. Journal of Experimental Botany 58:733–741

    Article  PubMed  CAS  Google Scholar 

  • Liu JJ, Ekramoddoullah AKM (2006) The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiological and Molecular Plant Pathology 68:3–13

    Article  CAS  Google Scholar 

  • Liu Y, Lan J, Wang C, Li B, Zhu J, Liu C, Dai HY (2016) Investigation and genetic mapping of a Glomerella leaf spot resistance locus in apple. Plant Breeding 136:119–125

    Article  CAS  Google Scholar 

  • Ludwig N, Löhrer M, Hempel M, Mathea S, Schliebner I, Menzel M, Kiesow A, Schaffrath U, Deising HB, Horbach R (2014) Melanin is not required for turgor generation but enhances cell-wall rigidity in appressoria of the corn pathogen Colletotrichum graminicola. Molecular Plant-Microbe Interactions 27:315–327

    Article  PubMed  Google Scholar 

  • Mayr U, Treutter D, Santos-Buelga C, Bauer H, Feucht W (1995) Developmental changes in the phenol concentrations of 'Golden Delicious' apple fruits and leaves. Phytochemistry 38:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Münch S, Lingner U, Floss DS, Ludwig N, Sauer N, Deising HB (2008) The hemibiotrophic lifestyle of Colletotrichum species. Journal of Plant Physiology 165:41–51

    Article  PubMed  CAS  Google Scholar 

  • Mur LAJ, Kenton P, Lloyd AJ, Ougham H, Prats E (2008) The hypersensitive response; the centenary is upon us but how much do we know? Journal of Experimental Botany 59:501–520

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology 22:867–880

    CAS  Google Scholar 

  • Narusaka Y, Narusaka M, Park P, Kubo Y, Hirayama T, Seki M, Shiraishi T, Ishida J, Nakashima M, Enju A, Sakurai T, Satou M, Kobayashi M, Shinozaki K (2004) RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum 17:749–762

  • O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF (2012) Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics 44:1060–1065

    Article  PubMed  CAS  Google Scholar 

  • Pavan S, Jacobsen E, Visser RGF, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Molecular Breeding 25:1–12

    Article  PubMed  Google Scholar 

  • Pessina S, Pavan S, Catalano D, Gallota A, Visser RGF, Bai Y, Malnoy M, Schouten HJ (2014) Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica. BMC Genomics 15:618

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research 30:e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Piffanelli P, Zhou F, Casais C, Orme J, Jarosch B, Schaffrath U, Collins NC, Panstruga R, Schulze-Lefert P (2002) The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiology 129:1076–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poupard P, Parisi L, Campion C, Ziadi S, Simoneau P (2003) A wound and etephon-inducible PR-10 gene subclass from apple is differentially expressed during infection with a compatible and an incompatible race of Venturia inaequalis. Physiological and Molecular Plant Pathology 62:3–12

    Article  CAS  Google Scholar 

  • Prusky D, Kobiler I, Jacoby B (1988) Involvement of epicatechin in cultivar susceptibility of avocado fruits to Colletotrichum gloeosporioides after harvest. Jourrnal of Phytopathology 123:140–146

    Article  CAS  Google Scholar 

  • Rockenbach MF, Boneti JI, Cangahuala-Inocente GC, Gavioli-Nascimento MCA, Guerra MP (2015) Histological and proteomics analysis of apple defense responses to the development of Colletotrichum gloeosporioides on leaves. Physiological and Molecular Plant Pathology 89:97–107

    Article  CAS  Google Scholar 

  • Rockenbach MF, Velho AC, Gonçalves AE, Mondino P, Alaniz SM, Stadnik MJ (2016) Genetic structure of Colletotrichum fructicola associated to apple bitter rot and Glomerella leaf spot in southern Brazil and Uruguay. Phytopathology 106:774–781

    Article  CAS  PubMed  Google Scholar 

  • Russo NL, Robinson TL, Fazio G, Aldwinckle HS (2008) Fire blight resistance of budagovsky 9 apple rootstock. Plant Disease 92:385–391

    Article  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Shetty NP, Jørgensen HJL, Jensen JD, Collinge DB, Shetty HS (2008) Roles of reactive oxygen species in interactions between plants and pathogens. European Journal of Plant Pathology 121:267–280

    Article  CAS  Google Scholar 

  • Sutton TB, Shane WW (1983) Epidemiology of the perfect stage of Glomerella cingulata on apples. Phytopathology 73:1179–1183

    Article  Google Scholar 

  • Thomma B, Penninckx I, Broekaert WF, Cammue BPA (2001) The complexity of disease signaling in Arabidopsis. Current Opinion in Immunology 13:63–68

    Article  CAS  PubMed  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei YD, Collinge DB (1997) Subcellular localization of H2O2 in plants - H2O2 accumulation in papillae and hypersensitive response during the barley powdery mildew interaction. The Plant Journal 11:1187–1194

    Article  CAS  Google Scholar 

  • Vale FXR, Fernandes Filho EI, Liberato JR (2003) QUANT. A software plant disease severity assessment. 8th International Congress of Plant Pathology, Christchurch, New Zealand p.105.

  • Van Loon LC, van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology 55:85–97

    Article  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology 44:135–162

    Article  PubMed  CAS  Google Scholar 

  • Velho AC, Alaniz SM, Casanova L, Mondino P, Stadnik MJ (2015) New insights into the characterization of Colletotrichum species associated with apple diseases in southern Brazil and Uruguay. Fungal Biology 119:229–244

    Article  PubMed  Google Scholar 

  • Velho AC, Rockenbach MF, Mondino P, Stadnik MJ (2016) Modulation of oxidative responses by a virulent isolate of Colletotrichum fructicola in apple leaves. Fungal Biology 120:1184–1193

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Shi X, Li B, Zhang Q, Liang W, Wang C (2016) Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple. Plant Physiology and Biochemistry 106:64–72

    Article  CAS  PubMed  Google Scholar 

  • Ziadi S, Poupard P, Brisset MN, Paulin JP, Simoneau P (2001) Characterization in apple leaves of two subclasses of PR-10 transcripts inducible by acibenzolar-S-methyl, a functional analogue of salicylic acid. Physiological and Molecular Plant Pathology 59:33–43

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian agency CAPES (Coordination for the improvement of higher education Personnel) for financial support (Grant: PPCP-MERCOSUL 022/2011). MJS is a research member of the National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mathias F. Rockenbach or Marciel J. Stadnik.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Section Editor: Lisa Vaillancourt

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rockenbach, M.F., Velho, A.C., Alaniz, S.M. et al. Resistance of apple leaves to infection by Colletotrichum fructicola acts independently of hypersensitive reaction and PR-1 and PR-10 gene expression. Trop. plant pathol. 43, 360–370 (2018). https://doi.org/10.1007/s40858-018-0217-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-018-0217-1

Keywords

Navigation