Skip to main content

Advertisement

Log in

Pyricularia oryzae-wheat interaction: physiological changes and disease management using mineral nutrition and fungicides

  • Review
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

This review aims to summarize our major findings on the host physiology affected by wheat blast caused by Pyricularia oryzae and disease management with emphasis on mineral nutrition and fungicides. Infected plants show reduced values of the leaf gas exchange parameters net carbon assimilation rate, stomatal conductance, and transpiration rate and greater values of internal CO2 concentration. Indeed, the photosynthetic machinery is damaged as suggested by reductions in the maximum quantum quenching, photochemical quenching coefficient and electron transport rate. A decrease in the concentration of photosynthetic pigments also occurs. Wheat resistance to blast is intrinsically associated with an increase in the production of reactive oxygen species (ROS), which favors host defense mechanisms against P. oryzae infection. In fact, a more efficient antioxidative system that removes the excess of ROS generated during the infection process of P. oryzae prevents the cellular damage caused by the fungus. As to mineral nutrition, plants supplied with high silicon and low magnesium rate exhibited reduced concentrations of ROS and a more efficient antioxidant system, thus preserving the photosynthetic performance. The expression levels of the defense-related genes pathogenesis-related 1, chitinase, peroxidase and phenylalanine ammonia-lyase were from 2- to 3-fold higher in silicon-amended plants, which showed leaf and rachis lesser colonized by the fungus. Wheat cultivars able to activate defense mechanisms against P. oryzae infection, thus possessing a more efficient antioxidant system, are recommended. However, fungicides applied during flowering time, in addition to host resistance, are necessary to achieve better control of head blast and reduce yield loss under conditions favorable for the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Aucique-Pérez CE, Rodrigues FA, Moreira WR, DaMatta FM (2014) Leaf gas exchange and chlorophyll a fluorescence in wheat plants supplied with silicon and infected with Pyricularia oryzae. Phytopathology 104:143–149

    Article  Google Scholar 

  • Barón M, Flexas J, DeLucia EH (2012) Photosynthetic responses to biotic stress. In: Flexas J, Loreto F, Medrano H (eds) Terrestrial photosynthesis in a changing environment: a molecular, physiological, and ecological approach. Cambridge University Press, Cambridge, pp 331–350

    Chapter  Google Scholar 

  • Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. J Exp Bot 58:4019–4026

    Article  CAS  PubMed  Google Scholar 

  • Biemelt S, Sonnewald U (2005) Plant-microbe interactions to probe regulation of plant carbon metabolism. J Plant Physiol 163:307–318

    Article  PubMed  Google Scholar 

  • Bilgin DD, Zavala JA, Zhu J, Cluogh SJ, Ort D, DeLucia EH (2010) Biotic stress globally down regulates photosynthesis genes. Plant Cell Environ 33:1597–1613

    Article  CAS  PubMed  Google Scholar 

  • Castroagudín VL, Ceresini PC, Oliveira SC, Reges JTA, Maciel JLN, Bonato ALV, Dorigan AF, McDonald BA (2015) Resistance to QoI fungicides is widespread in Brazilian populations of the wheat blast pathogen Magnaporthe oryzae. Phytopathology 105:284–294

    Article  PubMed  Google Scholar 

  • Cruz MFA, Prestes AM, Maciel JLN, Scheeren PL (2010) Resistência parcial à brusone de genótipos de trigo comum e sintético nos estádios de planta jovem e de planta adulta. Trop Plant Pathol 35:24–31

    Article  Google Scholar 

  • Cruz CD, Kiyuna J, Bockus WW, Todd TC, Stack JP, Valent B (2015a) Magnaporthe oryzae conidia on basal wheat leaves as a potential source of wheat blast inoculums. Plant Pathol 64:1491–1498

    Article  CAS  Google Scholar 

  • Cruz MFA, Debona D, Rios JA, Barros EG, Rodrigues FA (2015b) Potentiation of defense-related gene expression by silicon increases wheat resistance to leaf blast. Trop Plant Pathol 40:394–400

    Article  Google Scholar 

  • Cruz MFA, Silva LAF, Rios JA, Debona D, Rodrigues FA (2015c) Microscopic aspects of the colonization of Pyricularia oryzae on the rachis of wheat plants supplied with silicon. Bragantia 74:207–214

    Article  Google Scholar 

  • Cruz CD, Bockus WW, Kankanala P, JordanKW AE, Chumley F, Valent B (2016) The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum pathotype of Magnaporthe oryzae. Crop Sci 56:990–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debona D, Rodrigues FA, Rios JA, Nascimento KJT (2012) Biochemical changes in the leaves of wheat plants infected by Pyricularia oryzae. Phytopathology 102:1121–1129

    Article  CAS  PubMed  Google Scholar 

  • Debona D, Rodrigues FA, Rios JA, Martins SCV, Pereira LF, DaMatta FM (2014a) Limitations to photosynthesis in leaves of wheat plants infected by Pyricularia oryzae. Phytopathology 104:34–39

    Article  CAS  PubMed  Google Scholar 

  • Debona D, Rodrigues FA, Rios JA, Nascimento KJT, Silva LC (2014b) The effect of silicon on antioxidant metabolism of wheat leaves infected by Pyricularia oryzae. Plant Pathol 63:581–589

    Article  CAS  Google Scholar 

  • Debona D, Rios JA, Nascimento KJT, Silva LC, Rodrigues FA (2015) Influence of magnesium on physiological responses of wheat infected by Pyricularia oryzae. Plant Pathol 65:114–123

    Article  Google Scholar 

  • Debona D, Cruz MFA, Rodrigues FA (2016a) Expression of defense-related genes in wheat leaves infected with Pyricularia oryzae mediated by calcium. In: Del Ponte EM, Bergstrom GC, Pavan W, Lazzaretti L, Fernandes JMC (eds) Proceedings of 2nd International Workshop on Wheat Blast. p. 157

  • Debona D, Rios JA, Nascimento KJT, Silva LC, Rodrigues FA (2016b) Influence of magnesium on physiological responses of wheat infected by Pyricularia oryzae. Plant Pathol 65:114–123

  • Gara LD, Pinto MC, Tommasi F (2003) The antioxidant systems vis-à-vis reactive oxygen species during plant-pathogen interaction. Plant Physiol Biochem 41:863–870

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Goulart ACP, Paiva FA (1992) Incidência da brusone (Pyricularia grisea) em diferentes cultivares de trigo (Triticum aestivum) em condições de campo. Fitopatol Bras 17:321–325

    Google Scholar 

  • Goulart ACP, Paiva FA, Andrade PJM (1994) Fungi incidence in wheat seeds produced in Mato Grosso do Sul State. Ann Wheat Newsl 40:75–76

    Google Scholar 

  • Goulart ACP, Paiva FA, Melo Filho GA, Richetti A (1996) Efeito da época e do número de aplicações dos fungicidas tebuconazole e mancozeb no controle da brusone (Pyricularia grisea) do trigo; viabilidade técnica e econômica. Fitopatol Bras 21:381–387

    CAS  Google Scholar 

  • Goulart ACP, Sousa PG, Urashima AS (2007) Danos em trigo causados pela infecção de Pyricularia grisea. Summa Phytopathol 33:358–363

    Article  Google Scholar 

  • Huber DM, Jones JB (2013) The role of magnesium in plant disease. Plant Soil 368:73–85

    Article  CAS  Google Scholar 

  • Igarashi S, Utiamada CM, Igarashi IC, Kazuma AH, Lopes RS (1986) Pyricularia em trigo. 1. Ocorrência de Pyricularia sp. no estado do Paraná. Fitopatol Bras 11:351–352

    Google Scholar 

  • Kohli MM, Mehta YR, Guzman E, De Viedma L, Cubilla LE (2011) Pyricularia blast - a threat to wheat cultivation. Czech J Genet Plant Breed 47:130–134

    Google Scholar 

  • Liang Y, Sun W, Zhu Y-G, Christie P (2006) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pol 147:422–428

    Article  Google Scholar 

  • Maciel JLN (2011) Magnaporthe oryzae, the blast pathogen: current status and options for its control. Plant Sci Rev 233–240

  • Maciel JLN, Ceresini PC, Castroagudin VL, Kema GHJ, McDonald BA (2014) Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 25 years after its emergence in Brazil. Phytopathology 104:95–107

    Article  PubMed  Google Scholar 

  • Magbanua ZV, De Moraes CM, Brooks TD, Williams WP, Luthe DS (2007) Is catalase activity one of the factors associated with maize resistance to Aspergillus flavus? Mol Plant Microbe Interact 20:697–706

    Article  CAS  PubMed  Google Scholar 

  • Malaker PK, Reza MMA, Hakim MA, Barma NCD, Mannaf MA, Khaleque MA, Islam R, Tiwari TP3, Duveiller E (2016) Occurrence of wheat blast in Bangladesh. In: Del Ponte EM, Bergstrom GC, Pavan W, Lazzaretti L, Fernandes JMC (eds) Proceedings of 2nd International Workshop on Wheat Blast. p. 128

  • Moreira WR, Resende RS, Rodrigues FA, Andrade CCL, Nascimento CWA (2013) Influence of magnesium in rice resistance to brown spot. Bragantia 72:154–161

    Article  CAS  Google Scholar 

  • Owera SAP, Farrar JF, Whitbread R (1981) Growth and photosynthesis in barley infected with brown rust. Physiol Plant Pathol 18:79–90

    Article  CAS  Google Scholar 

  • Pagani APS, Dianese AC, Café-Filho AC (2014) Management of wheat blast with synthetic fungicides, partial resistance and silicate and phosphite minerals. Phytoparasitica 42:609–617

    Article  CAS  Google Scholar 

  • Reis EM, Casa RT (2005) Doenças do trigo. In: Kimati H, Amorim L, Rezende JAM, Bergamin Filho A, Camargo LEA (eds) Manual de Fitopatologia. Doenças de Plantas Cultivadas. Editora Ceres, São Paulo, pp 631–638

    Google Scholar 

  • Resende RS, Rodrigues FA, Cavatte PC, Martins SCV, Moreira WR, DaMatta FM (2012) Leaf gas exchange and oxidative stress in sorghum plants supplied with silicon and infected with Colletotrichum sublineolum. Phytopathology 102:892–898

    Article  CAS  PubMed  Google Scholar 

  • Rios JA, Rodrigues FA, Debona D, Silva LC (2014) Photosynthetic gas exchange in leaves of wheat plants supplied with silicon and infected with Pyricularia oryzae. Acta Physiol Plant 36:371–379

    Article  CAS  Google Scholar 

  • Rios JA, Rios VS, Paul PA, Souza MA, Araújo L, Rodrigues FA (2016) Fungicide and cultivar effects on the development and temporal progress of wheat blast under field conditions. Crop Prot 89:152–160

    Article  CAS  Google Scholar 

  • Rocha JRASC, Pimentel AJB, Ribeiro G, Souza MA (2014) Eficiência de fungicidas no controle da brusone em trigo. Summa Phytopathol 40:347–352

    Article  Google Scholar 

  • Rodrigues FA, Benhamou N, Datnoff LE, Jones JB, Bélanger RR (2003) Ultrastructural and cytochemical aspects of silicon mediated rice blast resistance. Phytopathology 93:535–546

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues FA, Jurick WM, Datnoff LE, Jones JB, Rollins JA (2005) Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions. Physiol Mol Plant Pathol 66:144–159

    Article  CAS  Google Scholar 

  • Shtienberg D (1992) Effects of foliar diseases on gas exchanges processes: a comparative study. Phytopathology 82:760–765

    Article  Google Scholar 

  • Silva WL, Cruz MFA, Fortunato AA, Rodrigues FA (2015) Histochemical aspects of wheat resistance to leaf blast mediated by silicon. Sci Agric 72:322–327

    Article  Google Scholar 

  • Sousa RS, Rodrigues FA, Schurt DA, Souza NFA, Cruz MFA (2013) Cytological aspects of the infection process of Pyricularia oryzae on leaves of wheat plants supplied with silicon. Trop Plant Pathol 38:472–477

    Article  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429

    Article  CAS  PubMed  Google Scholar 

  • Urashima AS, Lavorent NA, Goulart ACP, Mehta YR (2004) Resistance spectra of wheat cultivars and virulence diversity of Magnaporthe grisea isolates in Brazil. Fitopatol Bras 29:511–518

    Article  Google Scholar 

  • Urashima AS, Stabili A, Galbieri R (2005) DNA fingerprinting and sexual characterization revealed two distinct populations of Magnaporthe grisea in wheat blast from Brazil. Czech J Genet Plant Breed 41:238–245

    Google Scholar 

  • Xavier Filha MS, Rodrigues FA, Domiciano GP, Oliveira HV, Silveira PR, Moreira WR (2011) Wheat resistance to leaf blast mediated by silicon. Australas Plant Pathol 40:28–38

    Article  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zhan SW, Mayama S, Tosa Y (2008) Identification of two genes for resistance to Triticum isolates of Magnaporthe oryzae in wheat. Genome 51:216–221

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrício Ávila Rodrigues.

Additional information

Section Editor: Emerson M. Del Ponte

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, F.Á., Rios, J.A., Debona, D. et al. Pyricularia oryzae-wheat interaction: physiological changes and disease management using mineral nutrition and fungicides. Trop. plant pathol. 42, 223–229 (2017). https://doi.org/10.1007/s40858-017-0130-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-017-0130-z

Keyword

Navigation