Skip to main content

Advertisement

Log in

Fully Automated Detection of Osteoporosis Stage on Panoramic Radiographs Using YOLOv5 Deep Learning Model and Designing a Graphical User Interface

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Osteoporosis is a systemic disease that causes fracture risk and bone fragility due to decreased bone mineral density and deterioration of bone microarchitecture. Deep learning-based image analysis technologies have effectively been used as a decision support system in diagnosing disease. This study proposes a deep learning-based approach that automatically performs osteoporosis localization and stage estimation on panoramic radiographs with different contrasts.

Methods

Eight hundred forty-six panoramic radiographs were collected from the hospital database and pre-processed. Two radiologists annotated the images according to the Mandibular Cortical Index, considering the cortical region extending from the distal to the antegonial area of the foramen mentale. The data were trained and validated using the YOLOv5 deep learning algorithm in the Linux-based COLAB Pro cloud environment. The Weights and Bias platform was integrated into COLAB, and the training process was monitored instantly. Using the model weights obtained, the test data that the system had not seen before were analyzed. Using the non-maximum suppression technique on the test data, the bounding boxes of the regions that could be osteoporosis were automatically drawn. Finally, a graphical user interface was developed with the PyQT5 library.

Results

Two radiologists analyzed the data, and the performance criteria were calculated. The performance criteria of the test data were obtained as follows: an average precision of 0.994, a recall of 0.993, an F1-score of 0.993, and an inference time of 14.3 ms (0.0143 s).

Conclusion

The proposed method showed that deep learning could successfully perform automatic localization and staging of osteoporosis on panoramic radiographs without region-of-interest cropping and complex pre-processing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data sets can be shared with researchers who wish to conduct studies upon reasonable request.

References

  1. Yu, B., & Wang, C. Y. (2022). Osteoporosis and periodontal diseases–an update on their association and mechanistic links. Periodontology, 89(1), 99–113.

    Article  Google Scholar 

  2. Gerdhem, P. (2013). Osteoporosis and fragility fractures: Vertebral fractures. Best Practice Research Clinical Rheumatology, 27(6), 743–755.

    Article  PubMed  Google Scholar 

  3. Bliuc, D., Nguyen, T. V., Eisman, J. A., & Center, J. R. (2014). The impact of nonhip nonvertebral fractures in elderly women and men. The Journal of Clinical Endocrinology Metabolism, 99(2), 415–423.

    Article  CAS  PubMed  Google Scholar 

  4. Johnell, O., Kanis, J. A., Oden, A., Sernbo, I., Redlund-Johnell, I., Petterson, C., & Jönsson, B. (2004). Mortality after osteoporotic fractures. Osteoporosis International, 15(1), 38–42. https://doi.org/10.1007/s00198-003-1490-4

    Article  CAS  PubMed  Google Scholar 

  5. Sim, M. F. V., Stone, M. D., Phillips, C. J., Cheung, W. Y., Johansen, A., Vasishta, S., Pettit, R. J., & Evans, W. D. (2005). Cost effectiveness analysis of using quantitative ultrasound as a selective pre-screen for bone densitometry. Technology and Health Care: Official Journal of the European Society for Engineering and Medicine, 13(2), 75–85.

    Article  CAS  PubMed  Google Scholar 

  6. Smith, A. D. (2019). Screening of bone density at CT: An overlooked opportunity. Radiology, 291(2), 368–369. https://doi.org/10.1148/radiol.2019190434

    Article  PubMed  Google Scholar 

  7. International Atomic Energy Agency. (2022). Radiation protection in dental radiology. Safety Reports Series, vol. 108, Retrieved June 19, 2023, from https://www-pub.iaea.org/MTCD/Publications/PDF/PUB1972_Web.pdf

  8. Masthoff, M. (2019). Dental imaging–a basic guide for the radiologist. RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, 191(3), 192–198.

    Article  Google Scholar 

  9. Al-Dam, A. (2013). Mandibular cortical shape index in non-standardised panoramic radiographs for identifying patients with osteoporosis as defined by the German osteology organization. Journal of Cranio-Maxillo-Facial Surgery: Official Publication of the European Association for Cranio-Maxillo-Facial Surgery, 41(7), e165-9. https://doi.org/10.1016/j.jcms.2012.11.044

    Article  PubMed  Google Scholar 

  10. Taguchi, A. (2021). Clinical guidelines for the application of panoramic radiographs in screening for osteoporosis. Oral Radiology, 37(2), 189–208. https://doi.org/10.1007/s11282-021-00518-6

    Article  PubMed  Google Scholar 

  11. Klemetti, E., & Kolmakow, S. (1997). Morphology of the mandibular cortex on panoramic radiographs as an indicator of bone quality. Dentomaxillofacial Radiology, 26(1), 22–25.

    Article  CAS  PubMed  Google Scholar 

  12. Klemetti, E., Kolmakov, S., & Kröger, H. (1994). Pantomography in assessment of the osteoporosis risk group. European Journal of Oral Sciences, 102(1), 68–72.

    Article  CAS  Google Scholar 

  13. Taguchi, A. (2010). Triage screening for osteoporosis in dental clinics using panoramic radiographs. Oral Diseases, 16(4), 316–327.

    Article  CAS  PubMed  Google Scholar 

  14. Kiswanjaya, B., Priaminiarti, M., & Bachtiar-Iskandar, H. H. (2022). Three panoramic indices for identification of healthy older people at a high risk of osteoporosis. The Saudi Dental Journal. https://doi.org/10.1016/j.sdentj.2022.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  15. Taguchi, A., Tsuda, M., Ohtsuka, M., Kodama, I., Sanada, M., Nakamoto, T., Nakamoto, T., & Bollen, A. M. (2006). Use of dental panoramic radiographs in identifying younger postmenopausal women with osteoporosis. Osteoporosis International, 17(3), 387–394.

    Article  PubMed  Google Scholar 

  16. Taguchi, A., Ohtsuka, M., Tsuda, M., Nakamoto, T., Kodama, I., Inagaki, K., & T., Noguchi, Y., Kudo & Tanimoto, K. (2007). Risk of vertebral osteoporosis in post-menopausal women with alterations of the mandible. Dentomaxillofacial Radiology, 36(3), 143–148.

    Article  CAS  PubMed  Google Scholar 

  17. Taguchi, A., Suei, Y., Ohtsuka, M., Otani, K., Tanimoto, K., & Ohtaki, M. (1996). Usefulness of panoramic radiography in the diagnosis of postmenopausal osteoporosis in women. Width and morphology of inferior cortex of the mandible. Dentomaxillofacial Radiology, 25(5), 263–267.

    Article  CAS  PubMed  Google Scholar 

  18. Tuzoff, D. V., Tuzova, L. N., Bornstein, M. M., Krasnov, A. S., Kharchenko, M. A., Nikolenko, S. I., Sveshnikov, M. M., & Bednenko, G. B. (2019). Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofacial Radiology, 48(4), 20180051.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee, J. H., Kim, D. H., Jeong, S. N., & Choi, S. H. (2018). Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry, 77, 106–111.

    Article  PubMed  Google Scholar 

  20. Orhan, K., Bayrakdar, I., Ezhov, M., Kravtsov, A., & Özyürek, T. (2020). Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. International Endodontic Journal, 53(5), 680–689.

    Article  CAS  PubMed  Google Scholar 

  21. Krois, J. (2019). Deep learning for the radiographic detection of periodontal bone loss. Scientific Reports, 9(1), 8495. https://doi.org/10.1038/s41598-019-44839-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Faber, T. D., Yoon, D. C., Service, S. K., & White, S. C. (2004). Fourier and wavelet analyses of dental radiographs detect trabecular changes in osteoporosis. Bone, 35(2), 403–411.

    Article  PubMed  Google Scholar 

  23. Kavitha, M. S. (2015). Texture analysis of mandibular cortical bone on digital dental panoramic radiographs for the diagnosis of osteoporosis in Korean women. Oral surgery, oral medicine, oral pathology and oral radiology, 119(3), 346–356.

    Article  PubMed  Google Scholar 

  24. Roberts, M. G., Graham, J., & Devlin, H. (2013). Image texture in dental panoramic radiographs as a potential biomarker of osteoporosis. IEEE Transactions on Biomedical Engineering, 60(9), 2384–2392.

    Article  PubMed  Google Scholar 

  25. Alman, A., Johnson, L., Calverley, D., Grunwald, G., Lezotte, D., & Hokanson, J. (2012). Diagnostic capabilities of fractal dimension and mandibular cortical width to identify men and women with decreased bone mineral density. Osteoporosis International, 23(5), 1631–1636.

    Article  CAS  PubMed  Google Scholar 

  26. Yasar, F., & Akgunlu, F. (2008). Evaluating mandibular cortical index quantitatively. European Journal of Dentistry, 2(04), 283–290.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tosoni, G. M., Lurie, A. G., Cowan, A. E., & Burleson, J. A. (2006). Pixel intensity and fractal analyses: detecting osteoporosis in perimenopausal and postmenopausal women by using digital panoramic images. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 102(2), 235–241.

    Article  PubMed  Google Scholar 

  28. Kavitha, M. S., Asano, A., Taguchi, A., Kurita, T., & Sanada, M. (2012). Diagnosis of osteoporosis from dental panoramic radiographs using the support vector machine method in a computer-aided system. BMC Medical Imaging, 12(1), 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alzubaidi, M. A., & Otoom, M. (2020). A comprehensive study on feature types for osteoporosis classification in dental panoramic radiographs. Computer Methods and Programs in Biomedicine, 188, 105301.

    Article  PubMed  Google Scholar 

  30. Hwang, J. J., Lee, J. H., Han, S. S., Kim, Y. H., Jeong, H. G., Choi, Y. J., & Park, W. (2017). Strut analysis for osteoporosis detection model using dental panoramic radiography. Dentomaxillofacial Radiology, 46(7), 20170006.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Aliaga, I., Vera, V., Vera, M., García, E., Pedrera, M., & Pajares, G. (2020). Automatic computation of mandibular indices in dental panoramic radiographs for early osteoporosis detection. Artificial Intelligence in Medicine, 103, 101816.

    Article  PubMed  Google Scholar 

  32. Arifin, A. Z., Asano, A., Taguchi, A., Nakamoto, T., Ohtsuka, M., Tsuda, M., Kudo, Y., & Tanimoto, K. (2006). Computer-aided system for measuring the mandibular cortical width on dental panoramic radiographs in identifying postmenopausal women with low bone mineral density. Osteoporosis International, 17, 753–759.

    Article  CAS  PubMed  Google Scholar 

  33. Arifin, A.Z., Asano, A., Taguchi, A., Nakamoto, T., Ohtsuka, M., Tsuda, M., Kudo, Y., & Tanimoto, K. (2007). Use of fuzzy neural network in diagnosing postmenopausal women with osteoporosis based on dental panoramic radiographs. Journal of Advanced Computational Intelligence, 11(8). https://www.researchgate.net/profile/Akira-Asano/publication/220064753_Use_of_Fuzzy_Neural_Network_in_Diagnosing_Postmenopausal_Women_with_Osteoporosis_Based_on_Dental_Panoramic_Radiographs/links/570932c308aea660813586ac/se-of-Fuzzy-Neural-Network-in-Diagnosing-Postmenopausal-Women-with-Osteoporosis-Based-on-Dental-Panoramic-Radiographs.pdf

  34. Kavitha, M. S., Ganesh Kumar, P., Park, S. Y., Huh, K. H., Heo, M. S., Kurita, T., Asano, A., An, S. Y., & Chien, S. I. (2016). Automatic detection of osteoporosis based on hybrid genetic swarm fuzzy classifier approaches. Dentomaxillofacial Radiology, 45(7), 20160076.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chu, P. (2018). Using octuplet siamese network for osteoporosis analysis on dental panoramic radiographs, in 40th annual international conference of the IEEE engineering in medicine and biology society(EMBC) 2018, IEEE, pp. 2579–2582.

  36. Fan, H., Ren, J., Yang, J., Qin, Y. X., & Ling, H. (2021). Osteoporosis prescreening using panoramic radiographs through a deep convolutional neural network with attention mechanism. arXiv preprint arXiv:2110.09662

  37. Nakamoto, T., Taguchi, A., & Kakimoto, N. (2022). Osteoporosis screening support system from panoramic radiographs using deep learning by convolutional neural network. Dentomaxillofacial Radiology, 51, 20220135.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lee, J. S., Adhikari, S., Liu, L., Jeong, H. G., Kim, H., & Yoon, S. J. (2019). Osteoporosis detection in panoramic radiographs using a deep convolutional neural network-based computer-assisted diagnosis system: A preliminary study. Dentomaxillofacial Radiology, 48(1), 20170344.

    Article  PubMed  Google Scholar 

  39. Sukegawa, S., et al. (2022). Identification of osteoporosis using ensemble deep learning model with panoramic radiographs and clinical covariates. Scientific Reports, 12(1), 1–10.

    Article  Google Scholar 

  40. Tassoker, M., Öziç, M. Ü., & Yuce, F. (2022). Comparison of five convolutional neural networks for predicting osteoporosis based on mandibular cortical index on panoramic radiographs. Dentomaxillofacial Radiology, 51(6), 20220108.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lee, K. S., Jung, S. K., Ryu, J. J., Shin, S. W., & Choi, J. (2020). Evaluation of transfer learning with deep convolutional neural networks for screening osteoporosis in dental panoramic radiographs. Journal of Clinical Medicine, 9(2), 392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788.

  43. Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263–7271.

  44. Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767

  45. Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.

  46. Jocher, G., Nishimura, K., Mineeva, T., & Vilariño, R. (2020). yolov5, Code repository. https://github.com/ultralytics/yolov5

  47. Li, Z., Tian, X., Liu, X., Liu, Y., & Shi, X. (2022). A two-stage industrial defect detection framework based on improved-YOLOv5 and optimized-inception-resnetv2 models. Applied Sciences, 12(2), 834.

    Article  Google Scholar 

  48. Kim, D., Park, S., Kang, D., & Paik, J. (2019). Improved center and scale prediction-based pedestrian detection using convolutional block, in IEEE 9th international conference on consumer electronics (ICCE-Berlin), 2019: IEEE, pp. 418–419.

  49. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1904–1916.

    Article  PubMed  Google Scholar 

  50. Wang, W. (2019). Efficient and accurate arbitrary-shaped text detection with pixel aggregation network, in Proceedings of the IEEE/CVF international conference on computer vision, pp. 8440–8449.

  51. Liu, W. (2016). Ssd: Single shot multibox detector, in European conference on computer vision, Springer, pp. 21–37.

  52. Li, G., Suo, R., Zhao, G., Gao, C., Fu, L., Shi, F., Dhupia, J., Li, R., & Cui, Y. (2022). Real-time detection of kiwifruit flower and bud simultaneously in orchard using YOLOv4 for robotic pollination. Computers and Electronics in Agriculture, 193, 106641.

    Article  Google Scholar 

  53. Silva, B., Pinheiro, L., Oliveira, L., & Pithon, M. (2020). A study on tooth segmentation and numbering using end-to-end deep neural networks, in 2020 33rd SIBGRAPI conference on graphics, patterns and images (SIBGRAPI), IEEE, pp. 164–171.

  54. Celik, M. E. (2022). Deep learning based detection tool for impacted mandibular third molar teeth. Diagnostics, 12(4), 942.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Başaran, M. (2021). Diagnostic charting of panoramic radiography using deep-learning artificial intelligence system. Oral Radiology. https://doi.org/10.1007/s11282-021-00572-0

    Article  PubMed  Google Scholar 

  56. Yuce, F., Öziç, M.Ü., & Tassoker, M. (2023). Detection of pulpal calcifications on bite-wing radiographs using deep learning. Clinical Oral Investigations, 27(6), 2679–2689.

    Article  PubMed  Google Scholar 

  57. Lian, L., Zhu, T., Zhu, F., & Zhu, H. (2021). Deep learning for caries detection and classification. Diagnostics, 11(9), 1672.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mulligan, R., & Sobel, S. (2005). Osteoporosis: Diagnostic testing, interpretation, and correlations with oral health—implications for dentistry. Dental Clinics, 49(2), 463–484.

    PubMed  Google Scholar 

  59. Golchin, M. M., Heidari, L., Ghaderian, S. M. H., & Akhavan-Niaki, H. (2016). Osteoporosis: A silent disease with complex genetic contribution. Journal of Genetics and Genomics, 43(2), 49–61.

    Article  CAS  Google Scholar 

  60. Pai, M. V. (2017). Osteoporosis prevention and management. The Journal of Obstetrics and Gynecology of India, 67, 237–242.

    Article  PubMed  Google Scholar 

  61. Calciolari, E., Donos, N., Park, J., Petrie, A., & Mardas, N. (2015). Panoramic measures for oral bone mass in detecting osteoporosis: a systematic review and meta-analysis,. Journal of Dental Research, 94(3), 17S-27S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was presented as an abstract at the 26th Turkish Dental Association International Dentistry Congress (TDB) in Istanbul, Turkey, from September 8 to 11, 2022.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. MT and FY contributed to data collection, labeling and evaluation of results. MÜÖ contributed to algorithm design, coding, and determination of performance criteria. All authors contribute equally to article manuscript writing, literature review, and article design.

Corresponding author

Correspondence to Muhammet Üsame ÖZİÇ.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Ethical Approval

This study was conducted at the Faculty of Dentistry, Necmettin Erbakan University, Department of Dentomaxillofacial Radiology, with the approval of the Ethics Committee (No. 2022/149) and was performed according to the stipulations laid out by the Declaration of Helsinki.

Consent to Participants

It is a retrospective study.

Consent for Publication

There is no need.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ÖZİÇ, M.Ü., Tassoker, M. & Yuce, F. Fully Automated Detection of Osteoporosis Stage on Panoramic Radiographs Using YOLOv5 Deep Learning Model and Designing a Graphical User Interface. J. Med. Biol. Eng. 43, 715–731 (2023). https://doi.org/10.1007/s40846-023-00831-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-023-00831-x

Keywords

Navigation