Skip to main content

Advertisement

Log in

Evaluation of the Effect of Cortical Bone Thickness on Stress Distribution in Implant-Supported Fixed Prostheses

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to evaluate and compare the effects of fixed prostheses placed on mandibles with different cortical bone thicknesses, achieved through different treatment plans, on the stress levels of the prosthesis substructures, surrounding and supporting bone tissues, and implants under masticatory forces using finite element analysis (FEA).

Methods

Four different implant-supported prosthesis models were designed (M1 = all-on-four, M2 = 4 vertical implants in parallel and straight configuration, M3 = trefoil, M4 = all-on-three). For each treatment plan, the cortical bone surrounding the implants was modeled with four different thicknesses. In all models, chewing forces (100 N total, 25 N per region) were applied bilaterally in the mandibular canine and second premolar regions using the foodstuff method. Von Mises stresses on the prosthesis bars and implants, as well as the minimum and maximum principal stresses in the surrounding bone, were compared using FEA.

Results

The highest stress values were observed in the M4 plan, where the cortical bone was modeled with a thickness of 0.5 mm (maximum stress value, for supporting bone: 5438 MPa; for implants: 22,783 MPa; for infrastructure material: 14,524 MPa).Increasing the cortical bone thickness in all treatment plans resulted in a decrease in stress values on the prostheses and supporting bone. When the treatment plans were evaluated based on stress values, the ranking from lowest to highest stress values was as follows M4 = all-on-three, M3 = trefoil system, M2 = 4 implants, and M1 = all-on-four system. (Minimum stress value, for supporting bone: − 0.085 MPa; for implants 3622 MPa; for infrastructure material: 5205 Mpa.

Conclusion

Cortical bone thickness is a crucial factor in preventing damaging stresses in the supporting tissues during the planning of implant-supported fixed prosthesis. The evaluation of cortical thicknesses in mandibular resorbed cases obtained comparable results to other protocols in both alfalfa and three-in-one systems. Nevertheless, the treatment plan with four implant support proved to be the most beneficial for tissue stress values. Further clinical studies are necessary on this subject within the constraints of FEA analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data used to support the findings of this study are available from the corresponding author on request.

References

  1. Adell, R., Lekholm, U., Rockler, B., & Brånemark, P. I. (1981). A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. International Journal of Oral Surgery, 10(6), 387–416. https://doi.org/10.1016/S0300-9785(81)80077-4

    Article  CAS  PubMed  Google Scholar 

  2. Brånemark, P. I., Engstrand, P., Öhrnell, L. O., Gröndahl, K., Nilsson, P., Hagberg, K., & Lekholm, U. (1999). Brånemark Novum®: A new treatment concept for rehabilitation of the edentulous mandible. Preliminary results from a prospective clinical follow-up study. Clinical Implant Dentistry and Related Research, 1(1), 2–16. https://doi.org/10.1111/j.1708-8208.1999.tb00086.x

    Article  PubMed  Google Scholar 

  3. Engstrand, P., Grondahl, K., Öhrnell, L. O., Nilsson, P., Nannmark, U., & Branemark, P. I. (2003). Prospective follow-up study of 95 patients with edentulous mandibles treated according to the Branemark Novum concept. Clinical Implant Dentistry and Related Research, 5(1), 3–10. https://doi.org/10.1111/j.1708-8208.2003.tb00176.x

    Article  PubMed  Google Scholar 

  4. Hatano, N., Yamaguchi, M., Yaita, T., Ishibashi, T., & Sennerby, L. (2011). New approach for immediate prosthetic rehabilitation of the edentulous mandible with three implants: A retrospective study. Clinical Oral Implants Research, 22(11), 1265–1269. https://doi.org/10.1111/j.1600-0501.2010.02101.x

    Article  PubMed  Google Scholar 

  5. Oliva, J., Oliva, X., & Oliva, J. D. (2012). All-on-three delayed implant loading concept for the completely edentulous maxilla and mandible: A retrospective 5-year follow-up study. International Journal of Oral & Maxillofacial Implants, 27(6), 1584–1592.

    Google Scholar 

  6. Maló, P., Rangert, B., & Nobre, M. (2003). “All-on-Four” immediate-function concept with Brånemark System® implants for completely edentulous mandibles: A retrospective clinical study. Clinical Implant Dentistry and Related Research, 5, 2–9. https://doi.org/10.1111/j.1708-8208.2003.tb00010.x

    Article  PubMed  Google Scholar 

  7. Bedrossian, E., & Bedrossian, E. A. (2019). Treatment planning the edentulous mandible. Review of biomechanical and clinical considerations: An update. International Journal of Oral & Maxillofacial Implants, 34(3), 33–41.

    Article  Google Scholar 

  8. Patzelt, S. B., Bahat, O., Reynolds, M. A., & Strub, J. R. (2014). The all-on-four concept may be a viable treatment option for edentulous rehabilitation. Clinical Implant Dentistry and Related Research, 16, 836–855. https://doi.org/10.1038/sj.ebd.6401173

    Article  PubMed  Google Scholar 

  9. Horita, S., Sugiura, T., Yamamoto, K., Murakami, K., Imai, Y., & Kirita, T. (2017). Biomechanical analysis of immediately loaded implants according to the “all-on-four” concept. Journal of Prosthodontic Research, 61(2), 123–132. https://doi.org/10.1016/j.jpor.2016.08.002

    Article  PubMed  Google Scholar 

  10. Borgonovo, A. E., Galbiati, S. L., & Re, D. (2020). Trefoil system for the treatment of mandibular Edentulism: A case report with 30 months follow-up. Case Reports in Dentistry, 2020, 8845649. https://doi.org/10.1155/2020/8845649

    Article  PubMed  PubMed Central  Google Scholar 

  11. Higuchi, K., & Liddelow, G. (2019). An innovative implant-supported treatment for the edentulous mandible: Case report. International Journal of Oral & Maxillofacial Implants, 34(2), 13–16.

    Article  Google Scholar 

  12. Takahashi, T., Shimamura, I., & Sakurai, K. (2010). Influence of number and inclination angle of implants on stress distribution in mandibular cortical bone with all-on-4 concept. Journal of Prosthodontic Research, 54(4), 179–184. https://doi.org/10.1016/j.jpor.2010.04.004

    Article  PubMed  Google Scholar 

  13. Nobel Biocare AG. Trefoil™ Procedure manual. Retrieved July, 2023, from https://www.eotdental.com/uploads/pdf/trefoil.pdf

  14. Ashman, R. B., & Van Buskirk, W. C. (1987). The elastic properties of a human mandible. Advances in Dental Research, 1(1), 64–67. https://doi.org/10.1177/08959374870010011401

    Article  CAS  PubMed  Google Scholar 

  15. Albrektsson, T., Brånemark, P. I., & Zarb, G. A. (Eds.). (1985). Tissue-integrated prostheses: Osseointegration in clinical dentistry. Quintessence.

  16. Sevimay, M., Turhan, F., Kiliçarslan, M. A., & Eskitascioglu, G. (2005). Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. The Journal of Prosthetic Dentistry, 93(3), 227–234. https://doi.org/10.1016/j.prosdent.2004.12.019

    Article  CAS  PubMed  Google Scholar 

  17. Misch, C. E. (1990). Density of bone: Effect on treatment plans, surgical approach, healing, and progressive boen loading. The International Journal of Oral Implantology: Implantologist, 6(2), 23–31.

    CAS  PubMed  Google Scholar 

  18. Huang, H. L., Lin, T. W., Tsai, H. L., Wu, Y. L., & Wu, A. Y. J. (2022). Biomechanical effects of bone atrophy, implant design, and vertical or tilted of posterior implant on all-on-four concept implantation: finite element analysis. Journal of Medical and Biological Engineering, 42(4), 488–497. https://doi.org/10.1007/s40846-022-00725-4

    Article  Google Scholar 

  19. Huang, H. L., Hsu, J. T., Fuh, L. J., Tu, M. G., Ko, C. C., & Shen, Y. W. (2008). Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: A non-linear finite element study. Journal of Dentistry, 36(6), 409–417. https://doi.org/10.1016/j.jdent.2008.02.015

    Article  PubMed  Google Scholar 

  20. Okumura, N., Stegaroiu, R., Kitamura, E., Kurokawa, K., & Nomura, S. (2010). Influence of maxillary cortical bone thickness, implant design and implant diameter on stress around implants: A three-dimensional finite element analysis. Journal of Prosthodontic Research, 54(3), 133–142. https://doi.org/10.1016/j.jpor.2009.12.004

    Article  PubMed  Google Scholar 

  21. Özdemir Doğan, D., Polat, N. T., Polat, S., Şeker, E., & Gül, E. B. (2014). Evaluation of “all-on-four” concept and alternative designs with 3D finite element analysis method. Clinical Implant Dentistry and Related Research, 16(4), 501–510. https://doi.org/10.1111/cid.12024

    Article  PubMed  Google Scholar 

  22. Tükel, H. C., & Geçkil, N. (2023). Comparison of ımplant systems applied in the mental region in the prosthetic treatment of atrophic mandible: A 3D finite element analysis. European Annals of Dental Sciences, 50(1), 35–40. https://doi.org/10.52037/eads.2023.0008

    Article  Google Scholar 

  23. Baggi, L., Cappelloni, I., Di Girolamo, M., Maceri, F., & Vairo, G. (2008). The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: A three-dimensional finite element analysis. The Journal of prosthetic dentistry, 100(6), 422–431. https://doi.org/10.1016/S0022-3913(08)60259-0

    Article  PubMed  Google Scholar 

  24. Baggi, L., Pastore, S., Di Girolamo, M., & Vairo, G. (2013). Implant-bone load transfer mechanisms in complete-arch prostheses supported by four implants: A three-dimensional finite element approach. The Journal of Prosthetic Dentistry, 109(1), 9–21. https://doi.org/10.1016/S0022-3913(13)60004-9

    Article  PubMed  Google Scholar 

  25. Liu, T., Mu, Z., Yu, T., Wang, C., & Huang, Y. (2019). Biomechanical comparison of implant inclinations and load times with the all-on-4 treatment concept: A three-dimensional finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering, 22(6), 585–594. https://doi.org/10.1080/10255842.2019.1572120

    Article  PubMed  Google Scholar 

  26. Cheng, K. C., Liu, P. H., Chen, H. S., & Lan, T. H. (2022). Stress distribution of four-unit implant-supported fixed partial prosthesis with different numbers and positions of fixtures in maxilla anterior region-3D FEA. Journal of Medical and Biological Engineering, 42(4), 526–533. https://doi.org/10.1007/s40846-022-00729-0

    Article  Google Scholar 

  27. Nobel Biocare AG. Implants with Conical Connection Overview. Retrieved 2023, from https://www.nobelbiocare.com/en-us/catalogs

  28. Wheeler, R. C. (1969). An atlas of tooth form (Forth edition). Saunders (W.B.) Co Ltd.

  29. Bonnet, A. S., Postaire, M., & Lipinski, P. (2009). Biomechanical study of mandible bone supporting a four-implant retained bridge: Finite element analysis of the influence of bone anisotropy and foodstuff position. Medical Engineering & Physics, 31(7), 806–815. https://doi.org/10.1016/j.medengphy.2009.03.004

    Article  CAS  Google Scholar 

  30. Baldwin, D. K., King, G., Ramsay, D. S., Huang, G., & Bollen, A. M. (2008). Activation time and material stiffness of sequential removable orthodontic appliances. Part 3: Premolar extraction patients. American Journal of Orthodontics and Dentofacial Orthopedics, 133(6), 837–845. https://doi.org/10.1016/j.ajodo.2006.06.025

    Article  PubMed  Google Scholar 

  31. I-Chiang, C., Shyh-Yuan, L., Ming-Chang, W., Sun, C. W., & Jiang, C. P. (2014). Finite element modelling of implant designs and cortical bone thickness on stress distribution in maxillary type IV bone. Computer Methods in Biomechanics and Biomedical Engineering, 17(5), 516–526. https://doi.org/10.1080/10255842.2012.697556

    Article  PubMed  Google Scholar 

  32. Wong, R. C., Tideman, H., Kin, L., & Merkx, M. A. (2010). Biomechanics of mandibular reconstruction: A review. International Journal of Oral and Maxillofacial Surgery, 39(4), 313–319.

    Article  CAS  PubMed  Google Scholar 

  33. Balshi, T. J., Wolfinger, G. J., Balshi, S. F., & Bidra, A. S. (2019). A 30-year follow-up of a patient with mandibular complete-arch fixed implant-supported prosthesis on 4 implants: A clinical report. Journal of Prosthodontics, 28(2), 97–102. https://doi.org/10.1016/j.ijom.2009.11.003

    Article  PubMed  Google Scholar 

  34. Misch, C. E., Qu, Z., & Bidez, M. W. (1999). Mechanical properties of trabecular bone in the human mandible: Implications for dental implant treatment planning and surgical placement. Journal of Oral and Maxillofacial Surgery, 57(6), 700–706.

    Article  CAS  PubMed  Google Scholar 

  35. Elsayyad, A. A., Abbas, N. A., AbdelNabi, N. M., & Osman, R. B. (2020). Biomechanics of 3-implant-supported and 4-implant-supported mandibular screw-retained prostheses: A 3D finite element analysis study. The Journal of Prosthetic Dentistry, 124(1), 68-e1. https://doi.org/10.1016/s0278-2391(99)90437-8

    Article  Google Scholar 

  36. Hatano, N., Yamaguchi, M., Suwa, T., & Watanabe, K. (2003). A modified method of immediate loading using Brånemark implants in edentulous mandibles. Odontology, 91(1), 37–42. https://doi.org/10.1007/s10266-003-0027-9

    Article  PubMed  Google Scholar 

  37. Murugaian, J., Ganesan, L., Shankar, M. S., & Annapoorni, H. (2022). A comparative evaluation of stress distribution between an all-on-four implant-supported prosthesis and the Trefoil implant-supported prosthesis: A three-dimensional finite element analysis study. The Journal of the Indian Prosthodontic Society, 22(1), 56–64. https://doi.org/10.4103/jips.jips_203_21

    Article  PubMed Central  Google Scholar 

  38. Sousa, R. M., Simamoto-Junior, P. C., Fernandes-Neto, A. J., Sloten, J. V., Jaecques, S. V., & Pessoa, R. S. (2016). Influence of connection types and ımplant number on the biomechanical behavior of mandibular full-arch rehabilitation. The International Journal of Oral & Maxillofacial Implants, 31(4), 750–760. https://doi.org/10.11607/jomi.4785

    Article  Google Scholar 

  39. Bassi-Junior, L., de Souza Silva, R. O., Dos Santos, V. H. D., da Rocha Lourenço, A., Trevizoli, P. V., Gaêta-Araujo, H., & Gottardo, V. D. (2021). Mechanical analysis of prosthetic bars and dental implants in 3 and 4 implant-supported overdenture protocols using finite element analysis. Journal of Oral Biology and Craniofacial Research, 11(3), 438–441. https://doi.org/10.1016/j.jobcr.2021.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  40. Branemark, P. I. (1977). Osseointegrated implants in the treatment of the edentulous jaw: Experience from a 10-year period. Scandinavian Journal of Plastic and Reconstructive Surgery, 16, 1–132.

    CAS  Google Scholar 

  41. Krennmair, G., Seemann, R., Weinländer, M., Krennmair, S., & Piehslinger, E. (2013). Clinical outcome and peri-implant findings of four-implant-supported distal cantilevered fixed mandibular prostheses: Five-year results. International Journal of Oral & Maxillofacial Implants, 28(3), 831–840. https://doi.org/10.11607/jomi.3024

    Article  Google Scholar 

  42. Maló, P., de Araújo Nobre, M., & Lopes, A. (2013). The prognosis of partial implant-supported fixed dental prostheses with cantilevers. A 5-year retrospective cohort study. European Journal of Oral Implantology, 6(1), 51–59. https://doi.org/10.1016/j.jpor.2019.02.001

    Article  PubMed  Google Scholar 

  43. Correa, S., Ivancik, J., Isaza, J. F., & Naranjo, M. (2012). Evaluation of the structural behavior of three and four implant-supported fixed prosthetic restorations by finite element analysis. Journal of Prosthodontic Research, 56(2), 110–119. https://doi.org/10.1016/j.jpor.2011.07.001

    Article  PubMed  Google Scholar 

  44. Bellini, C. M., Romeo, D., Galbusera, F., Taschieri, S., Raimondi, M. T., Zampelis, A., & Francetti, L. (2009). Comparison of tilted versus nontilted implant-supported prosthetic designs for the restoration of the edentuous mandible: A biomechanical study. International Journal of Oral & Maxillofacial Implants, 24(3), 511–517. https://doi.org/10.1299/jbse.5.526

    Article  Google Scholar 

  45. Rubo, J. H., & Capello Souza, E. A. (2010). Finite-element analysis of stress on dental implant prosthesis. Clinical Implant Dentistry and Related Research, 12(2), 105–113. https://doi.org/10.5577/intdentres.2021.vol11.suppl1.27

    Article  PubMed  Google Scholar 

  46. Torrecillas-Martínez, L., Monje, A., Lin, G. H., Suarez, F., Ortega-Oller, I., Galindo-Moreno, P., & Wang, H. L. (2014). Effect of cantilevers for implant-supported prostheses on marginal bone loss and prosthetic complications: Systematic review and meta-analysis. International Journal of Oral & Maxillofacial Implants, 29(6), 1315–1321. https://doi.org/10.11607/jomi.3660

    Article  Google Scholar 

  47. Begg, T., Geerts, G. A. V. M., & Gryzagoridis, J. (2009). Stress patterns around distal angled implants in the all-on-four concept configuration. International Journal of Oral & Maxillofacial Implants, 24, 663–671.

    Google Scholar 

  48. Naini, R. B., Nokar, S., Borghei, H., & Alikhasi, M. (2011). Tilted or parallel implant placement in the completely edentulous mandible? A three-dimensional finite element analysis. International Journal of Oral & Maxillofacial Implants, 26(4), 776–781.

    Google Scholar 

  49. Zampelis, A., Rangert, B., & Heijl, L. (2007). Tilting of splinted implants for improved prosthodontic support: A two-dimensional finite element analysis. The Journal of Prosthetic Dentistry, 97(6), 35–43. https://doi.org/10.1016/S0022-3913(07)60006-7

    Article  Google Scholar 

  50. Weinstein, A. M., Klawitter, J. J., Anand, S. C., & Schuessler, R. (1976). Stress analysis of porous rooted dental implants. Journal of Dental Research, 55(5), 772–777. https://doi.org/10.1177/00220345760550051001

    Article  CAS  PubMed  Google Scholar 

  51. Karl, M., & Taylor, T. D. (2016). Bone adaptation ınduced by non-passively fitting ımplant superstructures: A randomized clinical trial. International Journal of Oral & Maxillofacial Implants, 31(2), 369–375. https://doi.org/10.11607/jomi.4331

    Article  Google Scholar 

  52. Sakaguchi, R. L., & Powers, J. M. (2011). Craig’s restorative dental materials-e-book. Elsevier Health Sciences.

    Google Scholar 

  53. Aydin, C., Özen, J., Yilmaz, C., & Korkmaz, T. (2006). Effects of mesiodistal inclination of implants on stress distribution in implant-supported fixed prostheses. International Journal of Oral & Maxillofacial Implants, 21(1), 36–44.

    Google Scholar 

  54. Tseng, B. T., Yen, Y. C., Cheng, C. S., Wang, C. H., Lien, K. H., Huang, C. M., & Su, K. C. (2022). Biomechanical effects of different miniplate thicknesses and fixation methods applied in BSSO surgery under two occlusal conditions. Journal of Medical and Biological Engineering, 42(4), 445–458. https://doi.org/10.1007/s40846-022-00733-4

    Article  Google Scholar 

  55. Liu, J., Pan, S., Dong, J., Mo, Z., Fan, Y., & Feng, H. (2013). Influence of implant number on the biomechanical behaviour of mandibular implant-retained/supported overdentures: A three-dimensional finite element analysis. Journal of Dentistry, 41(3), 241–249. https://doi.org/10.1016/j.jdent.2012.11.008

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Başak Kızıltan Eliçık for her contribution to the publication.

Funding

This research was financial support by 2022/071 number of scientific research projects of the University of Health Sciences.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by EGS, ET, ZBÖ and AÇŞ. The first draft of the manuscript was written by EGS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Elifnur Güzelce Sultanoğlu.

Ethics declarations

Competing Interests

No conflicts of interest in this study.

Ethical Approval

No human or animal data were used in this study. All study was done in computer environment. Ethical approval is not required.

Consent to Participate

Not required.

Consent to Publish

Not required.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güzelce Sultanoğlu, E., Özsağir, Z.B., Çiftçi Şişman, A. et al. Evaluation of the Effect of Cortical Bone Thickness on Stress Distribution in Implant-Supported Fixed Prostheses. J. Med. Biol. Eng. 43, 633–647 (2023). https://doi.org/10.1007/s40846-023-00830-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-023-00830-y

Keywords

Navigation