Skip to main content

Advertisement

Log in

Primary Stability of Conventionally Tapered Versus Reverse Tapered Body Shift Implants Under Varying Bone Support Conditions—An In-Vitro Study

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Achieving adequate primary stability is of crucial importance for successful osseointegration. However, many implant systems struggle to achieve adequate stability in cases where support around the upper coronal aspect of the implant is limited. The aim of this in-vitro study was to compare the stability of conventionally tapered (CT) versus reverse tapered body shift (RTBS) implants at varying bone support levels.

Methods

Peak insertion torque measurements of CT and RTBS implants were assessed in synthetic bone blocks at relative bone support levels representing scenarios in which a 13 mm long implant was 100%, 80% 60%, 40% and 20% surrounded by bone according to its length (n = 20 for each group).

Results

The mean [95% CI] insertion torque (Ncm) for the CT implants at the 100%, 80%, 60%, 40% and 20% relative bone support scenarios was 39.9 [38.38, 41.38], 31.8 [30.91, 32.73], 17.0 [16.40, 17.62], 10.3 [9.80, 10.70] and 4.3 [3.96, 4.55], respectively. Similarly, the mean insertion torque (Ncm) for the RTBS implants at each bone support level was 49.7 [47.54, 51.87], 50.1 [47.42, 52.79], 45.5 [42.99, 48.09], 23.6 [22.11, 25.13] and 7.3 [6.72, 7.89], respectively. The difference in performance (CT vs RTBS) was statistically significant (p < 0.001).

Conclusion

Reverse tapered body shift implants appear to provide superior primary stability to CT implants when bone support around the coronal section is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kim, D. S., Lee, W. J., Choi, S. C., Lee, S. C., Heo, M. S., Huh, K. H., Kim, T. I., & Yi, W. J. (2014). Comparison of dental implant stabilities by impact response and resonance frequencies using artificial bone. Medical Engineering Physics, 36(6), 715–720. https://doi.org/10.1016/j.medengphy.2013.12.004

    Article  PubMed  Google Scholar 

  2. O’Sullivan, D., Sennerby, L., & Meredith, N. (2004). Influence of implant taper on the primary and secondary stability of osseointegrated titanium implants. Clinical Oral Implants Research, 15(4), 474–480. https://doi.org/10.1111/j.1600-0501.2004.01041.x

    Article  PubMed  Google Scholar 

  3. Elias, C. N., Rocha, F. A., Nascimento, A. L., & Coelho, P. G. (2012). Influence of implant shape, surface morphology, surgical technique and bone quality on the primary stability of dental implants. Journal of Mechanical Behaviour of Biomedical Materials, 16, 169–180. https://doi.org/10.1016/j.jmbbm.2012.10.010

    Article  Google Scholar 

  4. Bilhan, H., Geckili, O., Mumcu, E., Bozdag, E., Sunbuloglu, E., & Kutay, O. (2010). Influence of surgical technique, implant shape and diameter on the primary stability in cancellous bone. Journal of Oral Rehabilitation, 37(12), 900–907. https://doi.org/10.1111/j.1365-2842.2010.02117.x

    Article  CAS  PubMed  Google Scholar 

  5. Martinez, H., Davarpanah, M., Missika, P., Celletti, R., & Lazzara, R. (2001). Optimal implant stabilization in low density bone. Clinical Oral Implants Research, 12, 423–432.

    Article  CAS  Google Scholar 

  6. Adell, R., Lekholm, U., Rockler, B., & Branemark, P. I. (1981). A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. International Journal of Oral Surgery, 10, 387–416.

    Article  CAS  Google Scholar 

  7. O’Sullivan, D., Sennerby, L., & Meredith, N. (2000). Measurement comparing the initial stability of five designs of dental implants. Clinical Implant Dentistry and Related Research, 2(2), 85–92.

    Article  Google Scholar 

  8. Sciasci, P., Casalle, N., & Vaz, L. G. (2018). Evaluation of primary stability in modified implants: Analysis by resonance frequency and insertion torque. Clinical Implant Dentistry and Related Research, 20(3), 274–279. https://doi.org/10.1111/cid.12574

    Article  PubMed  Google Scholar 

  9. Sivan-Gildor, A., Machtei, E. E., Gabay, E., Frankenthal, S., Levin, L., Suzuki, M., Coelho, P. G., & Zigdon-Giladi, H. (2014). Novel implant design improves implant survival in multirooted extraction sites: A preclinical pilot study. Journal of Periodontology, 85(10), 1458–1463. https://doi.org/10.1902/jop.2014.140042

    Article  PubMed  Google Scholar 

  10. Lundgren, D., Slotte, C., & Grondahl, K. (2013). A novel type of dental tube implant for areas with limited bone height. Clinical and radiographic data from three patients with 5-year follow-up. Clinical Implant Dentistry and Related Research, 15(4), 509–16. https://doi.org/10.1111/j.1708-8208.2011.00414.x

    Article  PubMed  Google Scholar 

  11. Meirelles, L., Branemark, P. I., Albrektsson, T., Feng, C., & Johansson, C. (2015). Histological evaluation of bone formation adjacent to dental implants with a novel apical chamber design: Preliminary data in the rabbit model. Clinical Implant Dentistry and Related Research, 17(3), 453–460. https://doi.org/10.1111/cid.12139

    Article  PubMed  Google Scholar 

  12. Christiaens, V., Pitman, J., Glibert, M., Hommez, G., Atashkadeh, M., & De Bruyn, H. (2020). Rationale for a reverse tapered body shift implant for immediate placement. International Journal of Oral & Maxillofacial Surgery, 49(12), 1630–1636. https://doi.org/10.1016/j.ijom.2020.04.007

    Article  CAS  Google Scholar 

  13. Nevins, M., Chu, S. J., Jang, W., & Kim, D. M. (2019). Evaluation of an innovative hybrid macrogeometry dental implant in immediate extraction sockets: A histomorphometric pilot study in foxhound dogs. International Journal of Periodontics & Restorative Dentistry, 39(1), 29–3. https://doi.org/10.11607/prd.3848

    Article  Google Scholar 

  14. Levin, B. P., Chu, S. J., Saito, H., Nevins, M., & Levin, J. P. (2021). A novel implant design for immediate extraction sites: Determining primary stability. International Journal of Periodontics & Restorative Dentistry, 41(3), 357–364. https://doi.org/10.11607/prd.5527

    Article  Google Scholar 

  15. Chu, S. J., Saito, H., Levin, B. P., Baumgarten, H., Egbert, N., Wills, M. J., Del Castillo, R. A., Tarnow, D. P., & Nevins, M. (2021). Outcomes of a 1-year prospective single-arm cohort study using a novel macro-hybrid implant design in extraction sockets. Part 1. International Journal of Periodontics & Restorative Dentistry, 41(4), 499–508. https://doi.org/10.11607/prd.5709

    Article  Google Scholar 

  16. Chu, S. J., Levin, B. P., Egbert, N., Saito, H., & Nevins, M. (2021). Use of a novel implant with an inverted body-shift and prosthetic angle correction design for immediate tooth replacement in the esthetic zone: A clinical case series. International Journal of Periodontics & Restorative Dentistry, 41(2), 195–204. https://doi.org/10.11607/prd.5401

    Article  Google Scholar 

  17. Chu, S. J., Saito, H., Levin, B. P., Baumgarten, H., Egbert, N., Wills, M. J., Del Castillo, R. A., Tarnow, D. P., & Nevins, M. (2018). Prospective multicenter clinical cohort study of a novel macro hybrid implant in maxillary anterior postextraction sockets: 1-year results. International Journal of Periodontics & Restorative Dentistry, 38(Suppl), s17–s27. https://doi.org/10.11607/prd.3987

    Article  Google Scholar 

  18. Wagenburg, B., & Froum, S. J. (2006). A retrospective study of 1235 consecutively placed immediate implants from 1988 to 2004. International Journal of Oral and Maxillofacial Implants, 21, 71–80.

    Google Scholar 

  19. Araujo, M. G., Sukekava, F., Wennstrom, J. L., & Lindhe, J. (2005). Ridge alterations following implant placement in fresh extraction sockets: An experimental study in the dog. Journal of Clinical Periodontology, 32(6), 645–652. https://doi.org/10.1111/j.1600-051X.2005.00726.x

    Article  PubMed  Google Scholar 

  20. Hsu, J. T., Shen, Y. W., Kuo, C. W., Wang, R. T., Fuh, L. J., & Huang, H. L. (2017). Impacts of 3D bone-to- implant contact and implant diameter on primary stability of dental implant. Journal of the Formosan Medical Association, 116(8), 582–590. https://doi.org/10.1016/j.jfma.2017.05.005

    Article  PubMed  Google Scholar 

  21. Akkocaoglu, M., Uysal, S., Tekdemir, I., Akca, K., & Cehreli, M. C. (2005). Implant design and intraosseous stability of immediately placed implants: A human cadaver study. Clinical Oral Implants Research, 16(2), 202–209. https://doi.org/10.1111/j.1600-0501.2004.01099.x

    Article  PubMed  Google Scholar 

  22. Buser, D., & Chen, S. (2017). Implant placement post extraction in esthetic single tooth sites: When immediate, when early, when late? Periodontology, 2000(73), 84–102. https://doi.org/10.1111/prd.12170

    Article  Google Scholar 

  23. Evans, C. D., & Chen, S. T. (2008). Esthetic outcomes of immediate implant placements. Clinical Oral Implants Research, 19(1), 73–80. https://doi.org/10.1111/j.1600-0501.2007.01413.x

    Article  PubMed  Google Scholar 

  24. Pluemsakunthai, W., Le, B., & Kasugai, S. (2015). Effect of buccal gap distance on alveolar ridge alteration after immediate implant placement: A microcomputed tomographic and morphometric analysis in dogs. Implant Dentistry, 24(1), 70–76. https://doi.org/10.1097/ID.0000000000000194

    Article  PubMed  Google Scholar 

  25. Ferrus, J., Cecchinato, D., Pjetursson, E. B., Lang, N. P., Sanz, M., & Lindhe, J. (2010). Factors influencing ridge alterations following immediate implant placement into extraction sockets. Clinical Oral Implants Research, 21(1), 22–29. https://doi.org/10.1111/j.1600-0501.2009.01825.x

    Article  PubMed  Google Scholar 

  26. Valente, M. L., de Castro, D. T., Shimano, A. C., Lepri, C. P., & dos Reis, A. C. (2015). Analysis of the influence of implant shape on primary stability using the correlation of multiple methods. Clinical Oral Investigations, 19(8), 1861–1866. https://doi.org/10.1007/s00784-015-1417-4

    Article  PubMed  Google Scholar 

  27. Han, H. C., Lim, H. C., Hong, J. Y., Ahn, S. J., Shin, S. I., Chung, J. H., Herr, Y., & Shin, S. Y. (2016). Primary implant stability in a bone model simulating clinical situations for the posterior maxilla: An in vitro study. Journal of Periodontal and Implant Science, 46(4), 254–265. https://doi.org/10.5051/jpis.2016.46.4.254

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brown, S. D., & Payne, A. G. (2011). Immediately restored single implants in the aesthetic zone of the maxilla using a novel design: 1-year report. Clinical Oral Implants Research, 22(4), 445–454. https://doi.org/10.1111/j.1600-0501.2010.02125.x

    Article  PubMed  Google Scholar 

  29. Karnik, N., Bhadri, K., Bora, U., Joshi, S., & Dhatrak, P. (2021). A Mathematical Model for Biomechanical Evaluation of Micro-motion in Dental Prosthetics using Vibroacoustic RFA. Journal of Medical and Biological Engineering, 41(4), 571–580. https://doi.org/10.1007/s40846-021-00636-w

    Article  Google Scholar 

  30. Meredith, N. (1996). Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clinical Oral Implants Research, 7, 261–267.

    Article  CAS  Google Scholar 

  31. Aparicio, C., Lang, N. P., & Rangert, B. (2006). Validity and clinical significance of biomechanical testing of implant/bone interface. Clinical Oral Implants Research, 17(2), 2–7.

    Article  Google Scholar 

  32. Ghorbel, H., Guidara, A., Guidara, R., Trigui, M., Bouaziz, J., Keskes, H., & Coddet, C. (2019). Assessment of the addition of fluorapatite-alumina coating for a durable adhesion of the interface prosthesis/bone cells: Implementation in vivo. Journal of Medical and Biological Engineering, 40(2), 158–168. https://doi.org/10.1007/s40846-019-00498-3

    Article  Google Scholar 

  33. Jokar, H., Rouhi, G., & Abolfathi, N. (2020). The effects of splinting on the initial stability and displacement pattern of periodontio-integrated dental implants: A finite element investigation. Journal of Medical and Biological Engineering, 40(5), 719–726. https://doi.org/10.1007/s40846-020-00544-5

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds were received for the preparation of this manuscript, however some study materials (implants, drills and tools) were provided by Southern Implants (Irene, South Africa).

Author information

Authors and Affiliations

Authors

Contributions

Drs JP contributed to the concept/design of the study, data collection and analysis/interpretation, statistics, drafting and final approval of the manuscript. Prof. VC contributed to the concept/design of the study, data collection and analysis/interpretation as well as critical revision and final approval of the manuscript. Prof. JC contributed to the concept/design of the study, analysis/interpretation of the data as well as critical revision and final approval of the manuscript. Dr. MG contributed to the concept/design of the study, analysis/interpretation of the data as well as critical revision and final approval of the manuscript.

Corresponding author

Correspondence to Jeremy Pitman.

Ethics declarations

Conflict of interest

Prof. Véronique Christiaens has a collaboration agreement with Southern Implants (Irene, South Africa). Prof. Jan Cosyn has a collaboration agreement with Nobel Biocare (Göteborg, Sweden) and Straumann (Basel, Switzerland) as well as grants from the Osteology Foundation and the ITI. Dr. Maarten Glibert and Drs Jeremy Pitman have no relevant financial or non-financial interests to disclose.

Ethical Approval

Due to the in-vitro design of this study, ethical approval for human or animal research was not mandatory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitman, J., Christiaens, V., Cosyn, J. et al. Primary Stability of Conventionally Tapered Versus Reverse Tapered Body Shift Implants Under Varying Bone Support Conditions—An In-Vitro Study. J. Med. Biol. Eng. 42, 429–435 (2022). https://doi.org/10.1007/s40846-022-00736-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-022-00736-1

Keywords

Navigation