Skip to main content
Log in

Monolithically integrated low-voltage soft e-skins designed to emulate biological sensorimotor loop

  • Highlights
  • Published:
Science China Materials Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Handler A, Ginty DD. The mechanosensory neurons of touch and their mechanisms of activation. Nat Rev Neurosci, 2021, 22: 521–537

    Article  CAS  Google Scholar 

  2. Johansson RS, Flanagan JR. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci, 2009, 10: 345–359

    Article  CAS  Google Scholar 

  3. Osborn LE, Dragomir A, Betthauser JL, et al. Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Sci Robot, 2018, 3: eaat3818

    Article  Google Scholar 

  4. Liu F, Deswal S, Christou A, et al. Neuro-inspired electronic skin for robots. Sci Robot, 2022, 7: eabl7344

    Article  Google Scholar 

  5. Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nat Mater, 2016, 15: 937–950

    Article  CAS  Google Scholar 

  6. Someya T, Bao Z, Malliaras GG. The rise of plastic bioelectronics. Nature, 2016, 540: 379–385

    Article  CAS  Google Scholar 

  7. Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327: 1603–1607

    Article  CAS  Google Scholar 

  8. Dobashi Y, Yao D, Petel Y, et al. Piezoionic mechanoreceptors: Force-induced current generation in hydrogels. Science, 2022, 376: 502–507

    Article  CAS  Google Scholar 

  9. Tee BCK, Chortos A, Berndt A, et al. A skin-inspired organic digital mechanoreceptor. Science, 2015, 350: 313–316

    Article  CAS  Google Scholar 

  10. Kim Y, Chortos A, Xu W, et al. A bioinspired flexible organic artificial afferent nerve. Science, 2018, 360: 998–1003

    Article  CAS  Google Scholar 

  11. Yuan S, Feng Z, Qiu B, et al. Silicon carbide nanowire-based multi-functional and efficient visual synaptic devices for wireless transmission and neural network computing. Sci China Mater, 2023, 66: 3238–3250

    Article  Google Scholar 

  12. Wen W, Guo Y, Liu Y. Multifunctional neurosynaptic devices for human perception systems. J Semicond, 2022, 43: 051201

    Article  Google Scholar 

  13. Yan S, Zang J, Xu P, et al. Recent progress in ferroelectric synapses and their applications. Sci China Mater, 2023, 66: 877–894

    Article  CAS  Google Scholar 

  14. Sokolov AS, Abbas H, Abbas Y, et al. Towards engineering in memristors for emerging memory and neuromorphic computing: A review. J Semicond, 2021, 42: 013101

    Article  Google Scholar 

  15. Liao F, Zhou F, Chai Y. Neuromorphic vision sensors: Principle, progress and perspectives. J Semicond, 2021, 42: 013105

    Article  Google Scholar 

  16. Huang Y, Zhao Z, Wang C, et al. Conductive metallic filaments dominate in hybrid perovskite-based memory devices. Sci China Mater, 2019, 62: 1323–1331

    Article  CAS  Google Scholar 

  17. Jin T, Gao J, Wang Y, et al. Flexible neuromorphic electronics based on low-dimensional materials. Sci China Mater, 2022, 65: 2154–2159

    Article  Google Scholar 

  18. Tong L, Peng Z, Lin R, et al. 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science, 2021, 373: 1353–1358

    Article  CAS  Google Scholar 

  19. Jung YH, Park B, Kim JU, et al. Bioinspired electronics for artificial sensory systems. Adv Mater, 2019, 31: 1803637

    Article  Google Scholar 

  20. Wang W, Jiang Y, Zhong D, et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science, 2023, 380: 735–742

    Article  CAS  Google Scholar 

  21. Wang B, Huang W, Chi L, et al. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem Rev, 2018, 118: 5690–5754

    Article  CAS  Google Scholar 

  22. Lee Y, Oh JY, Xu W, et al. Stretchable organic optoelectronic sensorimotor synapse. Sci Adv, 2018, 4: eaat7387

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhen Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, Q., Meng, H. & Shen, G. Monolithically integrated low-voltage soft e-skins designed to emulate biological sensorimotor loop. Sci. China Mater. 66, 4512–4514 (2023). https://doi.org/10.1007/s40843-023-2648-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2648-5

Navigation