Skip to main content
Log in

Triple-layered nc-Si:H films improve electrical properties and expand process window of IBC-SHJ solar cells simulated by Silvaco TCAD

Silvaco TCAD模拟应用三层氢化纳晶硅薄膜改善IBC-SHJ太阳电池的电学性能并扩大其工艺窗口

  • Letters
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

叉指式背接触硅异质结(IBC-SHJ)太阳电池由于其优异的光学性能备受关注, 但是较低的填充因子(FF)限制了其转换效率. 本文中, 我们用Silvaco TCAD软件模拟了IBC-SHJ太阳电池, 发现p-n结和高低结收集载流子的能力有很大差异. 高低结内建电场较弱, 难以收集电子是FF较低的主要原因. 因此, 我们用氢化纳晶硅(nc-Si:H)薄膜来代替氢化非晶硅(a-Si:H)薄膜, 并且在nc-Si:H薄膜表面覆盖一层超薄高掺杂层进一步提高了载流子传输效率, 获得了高达85.3%的FF. 此外, 三层nc-Si:H薄膜还提高了工艺生产中对掺杂层厚度的容错性, 这大大扩展了IBCSHJ太阳电池的工艺窗口. 这项工作为解决IBC-SHJ太阳电池的电学问题提供了一条有效的途径, 对工艺生产中IBC-SHJ太阳电池的设计具有指导意义.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Yoshikawa K, Kawasaki H, Yoshida W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy, 2017, 2: 17032

    Article  CAS  Google Scholar 

  2. Chen D, Chen Y, Wang Z, et al. 24.58% Total area efficiency of screen-printed, large area industrial silicon solar cells with the tunnel oxide passivated contacts (i-TOPCon) design. Sol Energy Mater Sol Cells, 2020, 206: 110258

    Article  CAS  Google Scholar 

  3. Liu W, Zhang L, Yang X, et al. Damp-heat-stable, high-efficiency, industrial-size silicon heterojunction solar cells. Joule, 2020, 4: 913–927

    Article  CAS  Google Scholar 

  4. Liu W, Shi J, Zhang L, et al. Light-induced activation of boron doping in hydrogenated amorphous silicon for over 25% efficiency silicon solar cells. Nat Energy, 2022, 7: 427–437

    Article  CAS  Google Scholar 

  5. Liu W, Liu Y, Yang Z, et al. Flexible solar cells based on foldable silicon wafers with blunted edges. Nature, 2023, 617: 717–723

    Article  CAS  Google Scholar 

  6. Diouf D, Kleider JP, Desrues T, et al. Study of interdigitated back contact silicon heterojunctions solar cells by two-dimensional numerical simulations. Mater Sci Eng-B, 2009, 159–160: 291–294

    Article  Google Scholar 

  7. Mingirulli N, Haschke J, Gogolin R, et al. Efficient interdigitated back-contacted silicon heterojunction solar cells. Physica Rapid Res Ltrs, 2011, 5: 159–161

    Article  CAS  Google Scholar 

  8. Lu M, Bowden S, Das U, et al. Interdigitated back contact silicon heterojunction solar cell and the effect of front surface passivation. Appl Phys Lett, 2007, 91: 063507

    Article  Google Scholar 

  9. Lu M, Das U, Bowden S, et al. Optimization of interdigitated back contact silicon heterojunction solar cells: Tailoring hetero-interface band structures while maintaining surface passivation. Prog Photovoltaics, 2011, 19: 326–338

    Article  CAS  Google Scholar 

  10. Franklin E, Fong K, McIntosh K, et al. Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell. Prog Photovoltaics, 2016, 24: 411–427

    Article  CAS  Google Scholar 

  11. Tomasi A, Paviet-Salomon B, Jeangros Q, et al. Simple processing of back-contacted silicon heterojunction solar cells using selective-area crystalline growth. Nat Energy, 2017, 2: 17062

    Article  CAS  Google Scholar 

  12. Haschke J, Mingirulli N, Gogolin R, et al. Interdigitated back-contacted silicon heterojunction solar cells with improved fill factor and efficiency. IEEE J Photovoltaics, 2011, 1: 130–134

    Article  Google Scholar 

  13. Tomasi A, Paviet-Salomon B, Lachenal D, et al. Back-contacted silicon heterojunction solar cells with efficiency >21%. IEEE J Photovoltaics, 2014, 4: 1046–1054

    Article  Google Scholar 

  14. Wagner P, Cruz A, Stang JC, et al. Low-resistance hole contact stacks for interdigitated rear-contact silicon heterojunction solar cells. IEEE J Photovoltaics, 2021, 11: 914–925

    Article  Google Scholar 

  15. Madani Ghahfarokhi O, von Maydell K, Agert C. Enhanced passivation at amorphous/crystalline silicon interface and suppressed Schottky barrier by deposition of microcrystalline silicon emitter layer in silicon heterojunction solar cells. Appl Phys Lett, 2014, 104: 113901

    Article  Google Scholar 

  16. Nogay G, Seif JP, Riesen Y, et al. Nanocrystalline silicon carrier collectors for silicon heterojunction solar cells and impact on low-temperature device characteristics. IEEE J Photovoltaics, 2016, 6: 1654–1662

    Article  Google Scholar 

  17. Zhao Y, Mazzarella L, Procel P, et al. Doped hydrogenated nanocrystalline silicon oxide layers for high-efficiency c-Si heterojunction solar cells. Prog Photovoltaics, 2020, 28: 425–435

    Article  CAS  Google Scholar 

  18. Lin H, Yang M, Ru X, et al. Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nat Energy, 2023, 8: 789–799

    Article  CAS  Google Scholar 

  19. Hamma S, Roca i Cabarrocas P. In situ correlation between the optical and electrical properties of thin intrinsic and n-type microcrystalline silicon films. J Appl Phys, 1997, 81: 7282–7288

    Article  CAS  Google Scholar 

  20. Mazzarella L, Kirner S, Stannowski B, et al. p-Type microcrystalline silicon oxide emitter for silicon heterojunction solar cells allowing current densities above 40mA/cm2. Appl Phys Lett, 2015, 106: 023902

    Article  Google Scholar 

  21. Juneja S, Sudhakar S, Gope J, et al. Highly conductive boron doped micro/nanocrystalline silicon thin films deposited by VHF-PECVD for solar cell applications. J Alloys Compd, 2015, 643: 94–99

    Article  CAS  Google Scholar 

  22. Qiu D, Duan W, Lambertz A, et al. Function analysis of the phosphine gas flow for n-type nanocrystalline silicon oxide layer in silicon heterojunction solar cells. ACS Appl Energy Mater, 2021, 4: 7544–7551

    Article  CAS  Google Scholar 

  23. Diouf D, Kleider JP, Desrues T, et al. 2D simulations of interdigitated back contact heterojunction solar cells based on n-type crystalline silicon. Phys Status Solidi (c), 2010, 7: 1033–1036

    Article  CAS  Google Scholar 

  24. Boukortt NEI. Optimization of IBC c-Si (n) solar cell using 2D physical modeling. Optik, 2019, 185: 707–715

    Article  Google Scholar 

  25. Belarbi M, Beghdad M, Mekemeche A. Simulation and optimization of n-type interdigitated back contact silicon heterojunction (IBC-SiHJ) solar cell structure using Silvaco Tcad Atlas. Sol Energy, 2016, 127: 206–215

    Article  CAS  Google Scholar 

  26. Wagner J, del Alamo JA. Band-gap narrowing in heavily doped silicon: A comparison of optical and electrical data. J Appl Phys, 1988, 63: 425–429

    Article  CAS  Google Scholar 

  27. Shu Z, Das U, Allen J, et al. Experimental and simulated analysis of front versus all-back-contact silicon heterojunction solar cells: Effect of interface and doped a-Si:H layer defects. Prog Photovolt-Res Appl, 2015, 23: 78–93

    Article  CAS  Google Scholar 

  28. Li SS, Thurber WR. The dopant density and temperature dependence of electron mobility and resistivity in n-type silicon. Solid-State Electron, 1977, 20: 609–616

    Article  CAS  Google Scholar 

  29. Song C, Xu J, Chen G, et al. High-conductive nanocrystalline silicon with phosphorous and boron doping. Appl Surf Sci, 2010, 257: 1337–1341

    Article  CAS  Google Scholar 

  30. Sharma M, Panigrahi J, Komarala VK. Nanocrystalline silicon thin film growth and application for silicon heterojunction solar cells: A short review. Nanoscale Adv, 2021, 3: 3373–3383

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (T2322028, 62004208, and 62074153), the Science and Technology Commission of Shanghai Municipality (22ZR1473200), China National Key R&D Program (2022YFC2807104), and the Research on the Key Technologies of High Efficiency Ultra-thin Heterojunction Solar Cell and Module (HNKJ22-H154).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Jiang K designed the study, conducted the simulation and wrote the manuscript. Zhang H verified and modified the model. Zhang L and Meng F guided the establishment of the model. Gao Y provided the software support and guidance. Yu X and Zhao D assisted in the data handling. Li R, Huang H and Hao Z assisted in the revision of figures. Liu Z and Liu W initiated and supervised the project, guided the simulation, and acquired the funding. All the authors participated in the discussion of the results and the revision of this manuscript.

Corresponding authors

Correspondence to Zhengxin Liu  (刘正新) or Wenzhu Liu  (刘文柱).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Kai Jiang is currently pursuing his PhD degree at the Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China. His research interests include amorphous silicon/crystalline silicon heterojunction solar cells, and interdigitated back contact silicon heterojunction solar cells.

Zhengxin Liu received his PhD degree from the Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Toyohashi, Japan, in 2000. In 2011, he joined Shanghai Institute of Microsystem and Information Technology, and set up the Research Center for New Energy Technology. His research interests include amorphous silicon/crystalline silicon heterojunction solar cells, semiconductor materials and solar cell devices, and standard measurement of solar cells.

Wenzhu Liu received a PhD degree from the Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China, in 2017. In 2020, he joined Shanghai Institute of Microsystem and Information Technology. His research interests include amorphous silicon/crystalline silicon heterojunction solar cells, amorphous silicon materials, and flexible silicon solar cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, K., Zhang, H., Zhang, L. et al. Triple-layered nc-Si:H films improve electrical properties and expand process window of IBC-SHJ solar cells simulated by Silvaco TCAD. Sci. China Mater. 66, 4891–4896 (2023). https://doi.org/10.1007/s40843-023-2610-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2610-y

Navigation