Skip to main content
Log in

Carbon-coated Fe2O3 hollow sea urchin nanostructures as high-performance anode materials for lithium-ion battery

中空海胆状结构的碳包覆Fe2O3用作锂离子电池的高性能负极材料

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Fe2O3 has become a promising anode material in lithium-ion batteries (LIBs) in light of its low cost, high theoretical capacity (1007 mA h g−1) and abundant reserves on the earth. Nevertheless, the practical application of Fe2O3 as the anode material in LIBs is greatly hindered by several severe issues, such as drastic capacity falloff, short cyclic life and huge volume change during the charge/discharge process. To tackle these limitations, carbon-coated Fe2O3 (Fe2O3@MOFC) composites with a hollow sea urchin nanostructure were prepared by an effective and controllable morphology-inherited strategy. Metal-organic framework (MOF)-coated FeOOH (FeOOH@-MIL-100(Fe)) was applied as the precursor and self-sacrificial template. During annealing, the outer MOF layer protected the structure of inner Fe2O3 from collapsing and converted to a carbon coating layer in situ. When applied as anode materials in LIBs, Fe2O3@MOFC composites showed an initial discharge capacity of 1366.9 mA h g−1 and a capacity preservation of 1551.3 mA h g−1 after 200 cycles at a current density of 0.1 A g−1. When increasing the current density to 1 A g−1, a reversible and high capacity of 1208.6 mA h g−1 was obtained. The enhanced electrochemical performance was attributed to the MOF-derived carbon coating layers and the unique hollow sea urchin nanostructures. They mitigated the effects of volume expansion, increased the lithium-ion mobility of electrode, and stabilized the as-formed solid electrolyte interphase films.

摘要

Fe2O3 由于成本低廉, 储量丰富和理论比容量高(1007 mA h g−1)等特点, 在锂离子电池负极材料的应用中极具发展前景. 然而一些问题仍然存在, 如: 充放电过程中比容量的迅速衰减, 不可逆的体积膨胀以及较短的循环寿命等. 这些问题严重制约了Fe2O3在锂离子电池中的实际应用. 为了突破这些局限, 本文以金属-有机骨架(MOFs)包覆的FeOOH(FeOOH@MIL-100(Fe))作为前驱体和自牺牲模板, 通过高温热处理制备得到一种能良好继承前驱体形貌的中空海胆状碳包覆的Fe2O3(Fe2O3@MOFC)复合材料. 在热处理过程中, 外部的MOF层很好地保护了内部Fe2O3结构的完整性, 并以原位转化的方式衍生为均匀分布在纳米粒子外部的碳涂层. 在 0.1 A g−1 的电流密度下, Fe2O3@MOFC可提供高达1366.9 mA h g−1的初始放电容量, 且充放电循环200次后, 仍能保持大约1551.3 mA h g−1的高放电容量. 在1 A g−1的高电流密度下循环300次后, 其比容量仍可保持在1208.6 mA h g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Y, Zhou W, Xin S, et al. Fluorine-doped antiperovskite electrolyte for all-solid-state lithium-ion batteries. Angew Chem Int Ed, 2016, 55: 9965–9968

    Article  CAS  Google Scholar 

  2. Dong X, Chen L, Liu J, et al. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci Adv, 2016, 2: e1501038

    Article  Google Scholar 

  3. Huang M, Mi K, Zhang J, et al. MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J Mater Chem A, 2017, 5: 266–274

    Article  CAS  Google Scholar 

  4. Chaudhari S, Srinivasan M. 1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries. J Mater Chem, 2012, 22: 23049–23056

    Article  CAS  Google Scholar 

  5. Cherian CT, Sundaramurthy J, Kalaivani M, et al. Electrospun α-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries. J Mater Chem, 2012, 22: 12198–12204

    Article  CAS  Google Scholar 

  6. Sahay R, Suresh Kumar P, Aravindan V, et al. High aspect ratio electrospun CuO nanofibers as anode material for lithium-ion batteries with superior cycleability. J Phys Chem C, 2012, 116: 18087–18092

    Article  CAS  Google Scholar 

  7. Wang Z, Luan D, Madhavi S, et al. Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ Sci, 2012, 5: 5252–5256

    Article  CAS  Google Scholar 

  8. Wu ZS, Zhou G, Yin LC, et al. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 2012, 1: 107–131

    Article  CAS  Google Scholar 

  9. Zhang L, Wu HB, Madhavi S, et al. Formation of Fe2O3 micro-boxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J Am Chem Soc, 2012, 134: 17388–17391

    Article  CAS  Google Scholar 

  10. Wang Z, Zhou L, David Lou XW. Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater, 2012, 24: 1903–1911

    Article  CAS  Google Scholar 

  11. Xiao L, Wu D, Han S, et al. Self-assembled Fe2O3/graphene aerogel with high lithium storage performance. ACS Appl Mater Interfaces, 2013, 5: 3764–3769

    Article  CAS  Google Scholar 

  12. Wang R, Xu C, Sun J, et al. Three-dimensional Fe2O3 nanocubes/nitrogen-doped graphene aerogels: Nucleation mechanism and lithium storage properties. Sci Rep, 2014, 4: 7171

    Article  CAS  Google Scholar 

  13. Sun LY, Yang L, Li J, et al. Superior full-cell cycling and rate performance achieved by carbon coated hollow Fe3O4 nanoellipsoids for lithium ion battery. Electrochim Acta, 2018, 288: 71–81

    Article  CAS  Google Scholar 

  14. Ding R, Zhang J, Qi J, et al. N-doped dual carbon-confined 3D architecture rGO/Fe3O4/AC nanocomposite for high-performance lithium-ion batteries. ACS Appl Mater Interfaces, 2018, 10: 13470–13478

    Article  CAS  Google Scholar 

  15. Agyeman DA, Song K, Lee GH, et al. Carbon-coated Si nano-particles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery. Adv Energy Mater, 2016, 6: 1600904

    Article  CAS  Google Scholar 

  16. Lu X, Dong S, Chen Z, et al. Preparation of carbon coated Ti2Nb2O9 nanosheets and its sodium ion storage properties. Acta Phys-Chim Sin, 2020, 36: 1906024

    Google Scholar 

  17. Chen X, Li H, Yan Z, et al. Structure design and mechanism analysis of silicon anode for lithium-ion batteries. Sci China Mater, 2019, 62: 1515–1536

    Article  CAS  Google Scholar 

  18. Cui Y, Li B, He H, et al. Metal-organic frameworks as platforms for functional materials. Acc Chem Res, 2016, 49: 483–493

    Article  CAS  Google Scholar 

  19. Yuan S, Feng L, Wang K, et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv Mater, 2018, 30: 1704303

    Article  CAS  Google Scholar 

  20. Yang L, Zeng X, Wang W, et al. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electro-catalysts for oxygen reduction reaction in fuel cells. Adv Funct Mater, 2018, 28: 1704537

    Article  CAS  Google Scholar 

  21. Cao X, Zheng B, Rui X, et al. Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Angew Chem Int Ed, 2014, 53: 1404–1409

    Article  CAS  Google Scholar 

  22. Zhao M, Yuan K, Wang Y, et al. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature, 2016, 539: 76–80

    Article  CAS  Google Scholar 

  23. Simon-Yarza T, Mielcarek A, Couvreur P, et al. Nanoparticles of metal-organic frameworks: On the road to in vivo efficacy in biomedicine. Adv Mater, 2018, 30: 1707365

    Article  CAS  Google Scholar 

  24. Szczęśniak B, Choma J, Jaroniec M. Gas adsorption properties of hybrid graphene-MOF materials. J Colloid Interface Sci, 2018, 514: 801–813

    Article  CAS  Google Scholar 

  25. Howarth AJ, Katz MJ, Wang TC, et al. High efficiency adsorption and removal of selenate and selenite from water using metal-organic frameworks. J Am Chem Soc, 2015, 137: 7488–7494

    Article  CAS  Google Scholar 

  26. Song Y, Li X, Sun L, et al. Metal/metal oxide nanostructures derived from metal-organic frameworks. RSC Adv, 2015, 5: 7267–7279

    Article  CAS  Google Scholar 

  27. Yi M, Zhang C, Cao C, et al. MOF-derived hybrid hollow sub-microspheres of nitrogen-doped carbon-encapsulated bimetallic Ni-Co-S nanoparticles for supercapacitors and lithium ion batteries. Inorg Chem, 2019, 58: 3916–3924

    Article  CAS  Google Scholar 

  28. Hou L, Jiang X, Jiang Y, et al. Facile preparation of porous rod-like CuxCo3-xO4/C composites via bimetal-organic framework derivation as superior anodes for lithium-ion batteries. ACS Omega, 2019, 4: 7565–7573

    Article  CAS  Google Scholar 

  29. Wang K, Chen M, He Z, et al. Hierarchical Fe3O4@C nanospheres derived from Fe2O3/MIL-100(Fe) with superior high-rate lithium storage performance. J Alloys Compd, 2018, 755: 154–162

    Article  CAS  Google Scholar 

  30. Ke F, Qiu LG, Yuan YP, et al. Fe3O4@MOF core-shell magnetic microspheres with a designable metal-organic framework shell. J Mater Chem, 2012, 22: 9497–9500

    Article  CAS  Google Scholar 

  31. Descostes M, Mercier F, Thromat N, et al. Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Appl Surf Sci, 2000, 165: 288–302

    Article  CAS  Google Scholar 

  32. Bhadra BN, Yoo DK, Jhung SH. Carbon-derived from metal-organic framework MOF-74: A remarkable adsorbent to remove a wide range of contaminants of emerging concern from water. Appl Surf Sci, 2020, 504: 144348

    Article  CAS  Google Scholar 

  33. Zhou J, Song H, Ma L, et al. Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Adv, 2011, 1: 782–791

    Article  CAS  Google Scholar 

  34. Li L, Zhou G, Weng Z, et al. Monolithic Fe2O3/graphene hybrid for highly efficient lithium storage and arsenic removal. Carbon, 2014, 67: 500–507

    Article  CAS  Google Scholar 

  35. Zhou H, Liu C, Wu JC, et al. Boosting the electrochemical performance through proton transfer for the Zn-ion hybrid super-capacitor with both ionic liquid and organic electrolytes. J Mater Chem A, 2019, 7: 9708–9715

    Article  CAS  Google Scholar 

  36. Cao K, Jiao L, Liu H, et al. 3D hierarchical porous a-Fe2O3 nanosheets for high-performance lithium-ion batteries. Adv Energy Mater, 2015, 5: 1401421

    Article  CAS  Google Scholar 

  37. Ge X, Liu S, Qiao M, et al. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew Chem Int Ed, 2019, 58: 14578–14583

    Article  CAS  Google Scholar 

  38. Tu F, Han Y, Du Y, et al. Hierarchical nanospheres constructed by ultrathin MoS2 nanosheets braced on nitrogen-doped carbon polyhedra for efficient lithium and sodium storage. ACS Appl Mater Interfaces, 2019, 11: 2112–2119

    Article  CAS  Google Scholar 

  39. Li Y, Zhu C, Lu T, et al. Simple fabrication of a Fe2O3/carbon composite for use in a high-performance lithium ion battery. Carbon, 2013, 52: 565–573

    Article  CAS  Google Scholar 

  40. Xia H, Zhu D, Fu Y, et al. CoFe2O4-graphene nanocomposite as a high-capacity anode material for lithium-ion batteries. Electrochim Acta, 2012, 83: 166–174

    Article  CAS  Google Scholar 

  41. Li X, Meng X, Liu J, et al. Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv Funct Mater, 2012, 22: 1647–1654

    Article  CAS  Google Scholar 

  42. Yoo EJ, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett, 2008, 8: 2277–2282

    Article  CAS  Google Scholar 

  43. Xu D, Li B, Wei C, et al. Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions. Electrochim Acta, 2014, 133: 254–261

    Article  CAS  Google Scholar 

  44. Chen C, Wen Y, Hu X, et al. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat Commun, 2015, 6: 6929

    Article  CAS  Google Scholar 

  45. Brezesinski K, Wang J, Haetge J, et al. Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. J Am Chem Soc, 2010, 132: 6982–6990

    Article  CAS  Google Scholar 

  46. Wang R, Lang J, Zhang P, et al. Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors. Adv Funct Mater, 2015, 25: 2270–2278

    Article  CAS  Google Scholar 

  47. Lian P, Zhu X, Liang S, et al. High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta, 2011, 56: 4532–4539

    Article  CAS  Google Scholar 

  48. Su Y, Li S, Wu D, et al. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano, 2012, 6: 8349–8356

    Article  CAS  Google Scholar 

  49. Laruelle S, Grugeon S, Poizot P, et al. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc, 2002, 149: A627

    Article  CAS  Google Scholar 

  50. Larcher D, Masquelier C, Bonnin D, et al. Effect of particle size on lithium intercalation into a-Fe2O3. J Electrochem Soc, 2003, 150: A133

    Article  CAS  Google Scholar 

  51. Larcher D, Bonnin D, Cortes R, et al. Combined XRD, EXAFS, and Mossbauer studies of the reduction by lithium of α-Fe2O3 with various particle sizes. J Electrochem Soc, 2003, 150: A1643

    Article  CAS  Google Scholar 

  52. Lee SH, Yu SH, Lee JE, et al. Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement. Nano Lett, 2013, 13: 4249–4256

    Article  CAS  Google Scholar 

  53. Gao G, Zhang Q, Wang K, et al. Axial compressive a-Fe2O3 microdisks prepared from CSS template for potential anode materials of lithium ion batteries. Nano Energy, 2013, 2: 1010–1018

    Article  CAS  Google Scholar 

  54. Guo W, Sun W, Lv LP, et al. Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage. ACS Nano, 2017, 11: 4198–4205

    Article  CAS  Google Scholar 

  55. Zhu T, Chen JS, Lou XWD. Glucose-assisted one-pot synthesis of FeOOH nanorods and their transformation to Fe3O4@carbon nanorods for application in lithium ion batteries. J Phys Chem C, 2011, 115: 9814–9820

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2017YFA0403402 and 2019YFA0405601), the National Natural Science Foundation of China (21773222, U1732272 and U1932214), the DNL Cooperation Fund, and Chinese Academy of Sciences (DNL180201).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Feng Y designed and engineered the samples; Shu N and Xie J performed the electrochemical experiments; Feng Y wrote the paper with support from Zhu J, Ke F and Zhu Y. All authors contributed to the general discussion.

Corresponding author

Correspondence to Junfa Zhu  (朱俊发).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Yuge Feng is a PhD student at the National Synchrotron Radiation Laboratory, University of Science and Technology of China (USTC). Her research interests mainly focus on synthesis and characterization of metal-organic frameworks (MOFs) for energy applications.

Junfa Zhu received his PhD in physical chemistry from USTC in 1999. After several years working in the Institute of Experimental Physics, Johannes-Kepler-Universität Linz (Austria), Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany), Department of Chemistry, University of Washington (USA), he returned to USTC in December, 2006, and became a professor at the National Synchrotron Radiation Laboratory, USTC under the support of “Hundred Talent Program” of Chinese Academy of Sciences. His research interests mainly focus on in-situ studies of surface chemistry and catalysis, surface/interface structures and properties of functional materials, and surface coordination chemistry.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Shu, N., Xie, J. et al. Carbon-coated Fe2O3 hollow sea urchin nanostructures as high-performance anode materials for lithium-ion battery. Sci. China Mater. 64, 307–317 (2021). https://doi.org/10.1007/s40843-020-1437-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1437-2

Keywords

Navigation