Skip to main content
Log in

Transition metal oxides for water oxidation: All about oxyhydroxides?

过渡金属氧化物析氧催化都是通过氧氢氧化物实 现的吗?

  • Perspectives
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

本文首先简单回顾了电解水的发展历史以及碱性和酸性条 件下电解水的电极材料特点. 对于碱性条件下的电解水, 电极材料 以过渡金属氧化物为主. 近年来, 人们对于过渡金属氧化物的析氧 反应开展了大量的研究, 特别关注钙钛矿、尖晶石、氧氢氧化物 等催化剂. 析氧反应条件苛刻, 一些氧化物催化剂会发生表面重构, 转化为过渡金属氧氢氧化物. 因此, 对这些氧化物来讲, 真正的催化 剂表面是一个氧氢氧化物的表面. 另一方面, 一些氧化物在析氧反 应中表现出较强的稳定性, 一般认为这些氧化物的表面不会发生 重构, 因而没有氧氢氧化物的生成. 一些已知的基于氧化物结构的 活性描述参数也对该观点提供了实验和理论支持. 最后, 本文提出 尚待回答的一个问题: 在析氧反应中是否所有的过渡金属氧化物 都会发生表面重构而生成一个氧氢氧化物的表面? 不管以上问题 的答案是什么, 该如何设计预催化剂实现重构后的高活性表面将 成为未来关注的热点之一.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Schalenbach M, Zeradjanin AR, Kasian O, et al. A perspective on low-temperature water electrolysis—Challenges in alkaline and acidic technology. Int J Electrochem Sci, 2018, 13: 1173–1226

    Article  CAS  Google Scholar 

  2. Klaus S, Cai Y, Louie MW, et al. Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity. J Phys Chem C, 2015, 119: 7243–7254

    Article  CAS  Google Scholar 

  3. Chen Y, Li H, Wang J, et al. Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat Commun, 2019, 10: 572

    Article  Google Scholar 

  4. Geiger S, Kasian O, Ledendecker M, et al. The stability number as a metric for electrocatalyst stability benchmarking. Nat Catal, 2018, 1: 508–515

    Article  CAS  Google Scholar 

  5. Gao J, Xu CQ, Hung SF, et al. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J Am Chem Soc, 2019, 141: 3014–3023

    Article  CAS  Google Scholar 

  6. Wang M, Árnadóttir L, Xu ZJ, et al. In situ X-ray absorption spectroscopy studies of nanoscale electrocatalysts. Nano-Micro Lett, 2019, 11: 47

    Article  Google Scholar 

  7. Jiang H, He Q, Zhang Y, et al. Structural self-reconstruction of catalysts in electrocatalysis. Acc Chem Res, 2018, 51: 2968–2977

    Article  CAS  Google Scholar 

  8. Bockris JOM, Otagawa T. The electrocatalysis of oxygen evolution on perovskites. J Electrochem Soc, 1984, 131: 290–302

    Article  CAS  Google Scholar 

  9. Suntivich J, May KJ, Gasteiger HA, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science, 2011, 334: 1383–1385

    Article  CAS  Google Scholar 

  10. Grimaud A, Diaz-Morales O, Han B, et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat Chem, 2017, 9: 457–465

    Article  CAS  Google Scholar 

  11. Rong X, Parolin J, Kolpak AM. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal, 2016, 6: 1153–1158

    Article  CAS  Google Scholar 

  12. May KJ, Carlton CE, Stoerzinger KA, et al. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J Phys Chem Lett, 2012, 3: 3264–3270

    Article  CAS  Google Scholar 

  13. Fabbri E, Nachtegaal M, Binninger T, et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat Mater, 2017, 16: 925–931

    Article  CAS  Google Scholar 

  14. Fabbri E, Nachtegaal M, Cheng X, et al. Superior bifunctional electrocatalytic activity of Ba0.5Sr0.5Co0.8Fe0.2O3−δ/carbon composite electrodes: Insight into the local electronic structure. Adv Energy Mater, 2015, 5: 1402033

    Article  Google Scholar 

  15. Mefford JT, Rong X, Abakumov AM, et al. Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat Commun, 2016, 7: 11053

    Article  CAS  Google Scholar 

  16. Duan Y, Sun S, Xi S, et al. Tailoring the Co 3d-O 2p covalency in LaCoO3 by Fe substitution to promote oxygen evolution reaction. Chem Mater, 2017, 29: 10534–10541

    Article  CAS  Google Scholar 

  17. Sun S, Sun Y, Zhou Y, et al. Shifting oxygen charge towards octahedral metal: A way to promote water oxidation on cobalt spinel oxides. Angew Chem Int Ed, 2019, 58: 6042–6047

    Article  CAS  Google Scholar 

  18. Wei C, Feng Z, Scherer GG, et al. Cations in octahedral sites: A descriptor for oxygen electrocatalysis on transition-metal spinels. Adv Mater, 2017, 29: 1606800

    Article  Google Scholar 

  19. Zhou Y, Sun S, Song J, et al. Enlarged Co-O covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction. Adv Mater, 2018, 30: 1802912

    Article  Google Scholar 

  20. Li H, Sun S, Xi S, et al. Metal-oxygen hybridization determined activity in spinel-based oxygen evolution catalysts: A case study of ZnFe2−xCrxO4. Chem Mater, 2018, 30: 6839–6848

    Article  CAS  Google Scholar 

  21. Man IC, Su H, Calle-Vallejo F, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem, 2011, 3: 1159–1165

    Article  CAS  Google Scholar 

  22. Duan Y, Sun S, Sun Y, et al. Mastering surface reconstruction of metastable spinel oxides for better water oxidation. Adv Mater, 2019, 31: 1807898

    Article  Google Scholar 

  23. Wu T, Sun S, Song J, et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat Catal, 2019, 334

  24. Jin S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett, 2017, 2: 1937–1938

    Article  Google Scholar 

  25. Zhao S, Wang Y, Dong J, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy, 2016, 1: 16184

    Article  CAS  Google Scholar 

  26. Huang ZF, Song J, Du Y, et al. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat Energy, 2019, 4: 329–338

    Article  CAS  Google Scholar 

  27. Xiong X, Cai Z, Zhou D, et al. A highly-efficient oxygen evolution electrode based on defective nickel-iron layered double hydroxide. Sci China Mater, 2018, 61: 939–947

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Singapore Ministry of Education Tier 2 (MOE2017-T2-1-009) and Singapore National Research Foundation under its Campus for Research Excellence And Technological Enterprise (CREATE) programme, through Singapore Berkeley Research Initiative for Sustainable Energy (SinBeRISE), Cambridge Center for Carbon Reduction in Chemical Technology (C4T), and eCO2EP programmes. The author thanks Dr. Shengnan Sun for proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichuan J. Xu  (徐梽川).

Additional information

Conflict of interest

The author declares no conflict of interest.

Zhichuan J. Xu is an associate professor in the School of Materials Science and Engineering at Nanyang Technological University (NTU). He received the PhD training from Lanzhou University, Institute of Physics (CAS), and Brown University. He worked at the State University of New York at Binghamton as a research associate and then in Massachusetts Institute of Technology as a postdoctoral researcher in the Electrochemical Energy Lab. His major research interests are electrocatalysis and energy storage materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z.J. Transition metal oxides for water oxidation: All about oxyhydroxides?. Sci. China Mater. 63, 3–7 (2020). https://doi.org/10.1007/s40843-019-9588-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-9588-5

Navigation