Skip to main content
Log in

Layer dependence of stacking order in nonencapsulated few-layer CrI3

本征铁磁二维材料CrI3层间堆叠结构层数依赖性研究

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Long-range magnetic orders in atomically thin ferromagnetic CrI3 trigger new fascinating physics and application perspectives. The physical properties of two-dimensional (2D) ferromagnetism CrI3 are significantly influenced by interlayer spacing and stacking order, which are sensitive to the hydrostatic pressure and external environments. However, there remains debate on the stacking order at low temperature. Here, we study the interlayer coupling and stacking order of non-encapsulated 2–5 layer and bulk CrI3 at 10 K by Raman spectroscopy; demonstrate a rhombohedral stacking in both antiferromagnetic and ferromagnetic CrI3. The opposite helicity dependence of Ag and Eg modes arising from phonon symmetry further validates the rhombohedral stacking. An anomalous temperature-dependent behavior is observed due to spin-phonon coupling below 60 K. Our study provides insights into the interlayer coupling and stacking orders of 2D ferromagnetic materials.

摘要

二维体系中的长程铁磁序现象再次打破了Mermin-Wagner理论. 铁磁二维材料的铁磁性与层层堆叠的顺序、 结构、 层间距息息相关. 目前对铁磁二维材料CrI3在低温下的堆叠顺序和结构仍不确定, 且未见报道. 针对该科学问题, 本工作深入研究了2–5层及块体CrI3的拉曼特征, 详细研究了拉曼特征峰与层数、 偏振、 旋光和温度之间的依赖关系; 揭示了2–5层及块体CrI3在低温下(10 K)为菱方堆叠结构, 解决了领域内关于CrI3低温结构的争议, 填补了该领域的研究空白, 并发现了自旋声子耦合现象. 本工作开创了独特的磁光电原位传输测量系统, 从样品制备到表征完全与空气隔绝, 避免样品污染和损坏, 因此, 本工作更准确地表征出了CrI3最本征的结构特性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546: 270–273

    Article  CAS  Google Scholar 

  2. Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546: 265–269

    Article  CAS  Google Scholar 

  3. Zhong D, Seyler KL, Linpeng X, et al. van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci Adv, 2017, 3: e1603113

    Article  Google Scholar 

  4. Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563: 94–99

    Article  CAS  Google Scholar 

  5. Mounet N, Gibertini M, Schwaller P, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotech, 2018, 13: 246–252

    Article  CAS  Google Scholar 

  6. Lee JU, Lee S, Ryoo JH, et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett, 2016, 16: 7433–7438

    Article  CAS  Google Scholar 

  7. Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotech, 2018, 13: 289–293

    Article  CAS  Google Scholar 

  8. Song T, Cai X, Tu MWY, et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science, 2018, 360: 1214–1218

    Article  CAS  Google Scholar 

  9. Klein DR, MacNeill D, Lado JL, et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science, 2018, 360: 1218–1222

    Article  CAS  Google Scholar 

  10. Wang Z, Gutiérrez-Lezama I, Ubrig N, et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat Commun, 2018, 9: 2516

    Article  Google Scholar 

  11. Huang B, Clark G, Klein DR, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotech, 2018, 13: 544–548

    Article  CAS  Google Scholar 

  12. Jiang S, Shan J, Mak KF. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater, 2018, 17: 406–410

    Article  CAS  Google Scholar 

  13. Jiang S, Li L, Wang Z, et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotech, 2018, 13: 549–553

    Article  CAS  Google Scholar 

  14. Wang Z, Zhang T, Ding M, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat Nanotech, 2018, 13: 554–559

    Article  CAS  Google Scholar 

  15. Li T, Jiang S, Sivadas N, et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat Mater, 2019, 81

  16. Song T, Fei Z, Yankowitz M, et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat Mater, 2019, 546: doi: https://doi.org/10.1038/s41563-019-0505-2

    Article  CAS  Google Scholar 

  17. McGuire MA, Dixit H, Cooper VR, et al. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem Mater, 2015, 27: 612–620

    Article  CAS  Google Scholar 

  18. Djurdjić-Mijin S, Šolajić A, Pešić J, et al. Lattice dynamics and phase transition in CrI3 single crystals. Phys Rev B, 2018, 98: 104307

    Article  Google Scholar 

  19. Sun Z, Yi Y, Song T, et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature, 2019, 572: 497–501

    Article  CAS  Google Scholar 

  20. Klein DR, MacNeill D, Song Q, et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. Nat Phys, 2019, 546

  21. Sivadas N, Okamoto S, Xu X, et al. Stacking-dependent magnetism in bilayer CrI3. Nano Lett, 2018, 18: 7658–7664

    Article  CAS  Google Scholar 

  22. Webster L, Liang L, Yan JA. Distinct spin-lattice and spin-phonon interactions in monolayer magnetic CrI3. Phys Chem Chem Phys, 2018, 20: 23546–23555

    Article  CAS  Google Scholar 

  23. Sun L, Zheng J. Optical visualization of MoS2 grain boundaries by gold deposition. Sci China Mater, 2018, 61: 1154–1158

    Article  CAS  Google Scholar 

  24. Wu S, Shi X, Liu Y, et al. The influence of two-dimensional organic adlayer thickness on the ultralow frequency Raman spectra of transition metal dichalcogenide nanosheets. Sci China Mater, 2019, 62: 181–193

    Article  CAS  Google Scholar 

  25. Zhao W, Ghorannevis Z, Amara KK, et al. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale, 2013, 5: 9677–9683

    Article  CAS  Google Scholar 

  26. Zhang X, Qiao XF, Shi W, et al. Phonon and raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem Soc Rev, 2015, 44: 2757–2785

    Article  CAS  Google Scholar 

  27. Xiao Y, Zhou M, Liu J, et al. Phase engineering of two-dimensional transition metal dichalcogenides. Sci China Mater, 2019, 62: 759–775

    Article  CAS  Google Scholar 

  28. Ren J, Teng C, Cai Z, et al. Controlled one step thinning and doping of two-dimensional transition metal dichalcogenides. Sci China Mater, 2019, 62: 1837–1845

    Article  Google Scholar 

  29. Lu X, Luo X, Zhang J, et al. Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Res, 2016, 9: 3559–3597

    Article  CAS  Google Scholar 

  30. Zhao Y, Luo X, Li H, et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett, 2013, 13: 1007–1015

    Article  CAS  Google Scholar 

  31. Loudon R. The Raman effect in crystals. Adv Phys, 1964, 13: 423–482

    Article  CAS  Google Scholar 

  32. Baum A, Milosavljević A, Lazarević N, et al. Phonon anomalies in FeS. Phys Rev B, 2018, 97: 054306

    Article  CAS  Google Scholar 

  33. Granado E, García A, Sanjurjo JA, et al. Magnetic ordering effects in the Raman spectra of La1−xMn1−xO3. Phys Rev B, 1999, 60: 11879–11882

    Article  CAS  Google Scholar 

  34. Jin W, Kim HH, Ye Z, et al. Raman fingerprint of two terahertz spin wave branches in a two-dimensional honeycomb Ising ferromagnet. Nat Commun, 2018, 9: 5122

    Article  Google Scholar 

  35. Yao X, Ma J, Lin Y, et al. Magnetoelectric coupling across the interface of multiferroic nanocomposites. Sci China Mater, 2015, 58: 143–155

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (51602040 and 51872039), the Science and Technology Program of Sichuan (M112018JY0025) and the Scientific Research Foundation for New Teachers of UESTC (A03013023601007).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Peng B developed the concept, designed the experiment and prepared the manuscript. Cheng Y synthesized the CrI3 crystal. Deng B, Guo K, Liu Z, Gao C and Shi Z prepared the CrI3 samples and performed the Raman measurements. Bi L, Zhou P, Zhang L, Lu H and Zhang L contributed to mechanism of Raman scattering.

Corresponding authors

Correspondence to Linbo Zhang  (张林博) or Bo Peng  (彭波).

Ethics declarations

Conflict of interest The authors declare no competing financial interests.

Additional information

Bo Peng received his BSc (Honors) from Lanzhou University in 2005, and obtained his PhD degree from the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences in 2010. He did his postdoctoral research in Singapore between 2010 and 2015. He is currently the Head of the Magneto-optical 2D Materials Group in the University of Electronic Science and Technology of China. His research is focused on the 2D ferromagnetic materials toward spintronics and valleytronics.

Kai Guo received his BSc from the University of Electronic Science and Technology of China in 2017. He focuses his research on the Raman studies of 2D ferromagnetic CrI3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, K., Deng, B., Liu, Z. et al. Layer dependence of stacking order in nonencapsulated few-layer CrI3. Sci. China Mater. 63, 413–420 (2020). https://doi.org/10.1007/s40843-019-1214-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-1214-y

Keywords

Navigation