Skip to main content
Log in

In vitro and in vivo cytocompatibility evaluation of biodegradable magnesium-based stents: a review

生物可降解镁基支架细胞相容性的体内外评价: 综述

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Biodegradable magnesium (Mg)-based vascular stents have been designed as temporary scaffolds to treat angiostenotic lesions for the maintenance of normal blood flow. Numerous studies have presented in vitro and in vivo tests for the evaluation of the safety and feasibility of Mg-based vascular stents and the related materials. Therein the cytocompatibility is a basic and important parameter in the evaluation system. In this review, we summarize the applications and limitations of in vitro evaluation methods including basic characterization methods and direct and indirect cytotoxicity tests. We discuss the influencing factors on cytotoxicity, such as surface roughness, preconditioning of sample surface, cell type for the biocompatibility evaluation in direct contact as well as conditions for the formation of extracts/degradation products for indirect assays. Besides, we highlight the recent in vivo animal tests and clinical trials about Mg-based stents along with some associated results. The aim of this review is to provide a meaningful reference in the further developments and related evaluation methods of Mg-based stents.

摘要

生物可降解镁基血管支架具有临时支撑血管的作用, 用来治疗血管狭窄病变, 维持正常血流. 目前许多研究者已经报道了关于体内外评价镁基支架或其相关材料的生物安全性和应用可行性, 其中, 细胞相容性在这些评价系统中是一项非常重要的基本参数. 本文总结了包括直接法和间接法在内的体外评价方法的应用和缺陷, 以及表征细胞毒性的方法, 如MTT 和XTT等. 我们也讨论了体外细胞毒性的一些 影响因素, 在直接培养法中包括样品表面粗糙度、 样品表面预处理、 所采用的细胞类型等; 在间接法中有样品表面积和浸提溶液体积比值、 培养基中的血清浓度、 浸提液中的离子积累. 此外, 我们也列出了目前关于镁基支架的体内动物实验和临床试验及其相关的结果. 本综述的目的是希望能为将来镁基支架的研发和所涉及到的评价方法提供有意义的参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan G, Jie HU, Gao B, Wen T, Feng XU. Advances in monitoring of cardiovascular diseases at the point of care. Sci Sin Technol, 2016, 46: 1116–1134

    Google Scholar 

  2. Qi PK, Yang Y, Maitz FM, et al. Current status of research and application in vascular stents. Chin Sci Bull, 2013, 58: 4362–4370

    Article  CAS  Google Scholar 

  3. Seal CK, Vince K, Hodgson MA. Biodegradable surgical implants based on magnesium alloys—a review of current research. IOP Conf Ser Mater Sci Eng, 2009, 4: 012011

    Article  CAS  Google Scholar 

  4. Moravej M, Mantovani D. Biodegradable metals for cardiovascular stent application: interests and new opportunities. IJMS, 2011, 12: 4250–4270

    Article  CAS  Google Scholar 

  5. Mani G, Feldman MD, Patel D, et al. Coronary stents: A materials perspective. Biomaterials, 2007, 28: 1689–1710

    Article  CAS  Google Scholar 

  6. Erne P, Schier M, Resink TJ. The road to bioabsorbable stents: reaching clinical reality? Cardiovasc Intervent Radiol, 2006, 29: 11–16

    Article  Google Scholar 

  7. Ke Y. High nitrogen nickel-free austenitic stainless steel:A promising coronary stent material. Sci Sin Technol, 2012, 55: 329–340

    Google Scholar 

  8. Ma J, Zhao N, Betts L, et al. Bio-adaption between magnesium alloy stent and the blood vessel: a review. J Mater Sci Tech, 2016, 32: 815–826

    Article  Google Scholar 

  9. Goyer RA. Toxic and essential metal interactions. Annu Rev Nutr, 1997, 17: 37–50

    Article  CAS  Google Scholar 

  10. Saris NEL, Mervaala E, Karppanen H, et al. Magnesium. Clinica Chim Acta, 2000, 294: 1–26

    Article  CAS  Google Scholar 

  11. Zartner P, Cesnjevar R, Singer H, et al. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Cathet Cardiovasc Intervent, 2005, 66: 590–594

    Article  Google Scholar 

  12. Gu X, Zheng Y, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 2009, 30: 484–498

    Article  CAS  Google Scholar 

  13. Heublein B. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart, 2003, 89: 651–656

    Article  CAS  Google Scholar 

  14. Zberg B, Uggowitzer PJ, Löffler JF. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater, 2009, 8: 887–891

    Article  CAS  Google Scholar 

  15. Mao L, Shen L, Niu J, et al. Nanophasic biodegradation enhances the durability and biocompatibility of magnesium alloys for the next-generation vascular stents. Nanoscale, 2013, 5: 9517–9522

    Article  CAS  Google Scholar 

  16. Witte F, Feyerabend F, Maier P, et al. Biodegradable magnesium–hydroxyapatite metal matrix composites. Biomaterials, 2007, 28: 2163–2174

    Article  CAS  Google Scholar 

  17. He YH, Tao HR, Zhang Y, et al. Biocompatibility of bio-Mg-Zn alloy within bone with heart, liver, kidney and spleen. Chin Sci Bull, 2009, 54: 484–491

    CAS  Google Scholar 

  18. Tang AT, Liu B, Pan FS, Zhang J, Peng J, Wang JF. An improved neural network model for prediction of mechanical properties of magnesium alloys. Sci Sin Technol, 2009, 52: 155–160

    CAS  Google Scholar 

  19. Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng-R-Rep, 2014, 77: 1–34

    Article  Google Scholar 

  20. Zhong WY, Lü M, Liu LY, et al. Autophagy as new emerging cellular effect of nanomaterials. Chin Sci Bull, 2013, 58: 4031–4038

    Article  Google Scholar 

  21. Cui L, Sun L, Zeng R, et al. In vitro degradation and biocompatibility of Mg-Li-Ca alloys—the influence of Li content. Sci China Mater, 2018, 61: 607–618

    Article  Google Scholar 

  22. Pérez P, Onofre E, Cabeza S, et al. Corrosion behaviour of Mg–Zn–Y–Mischmetal alloys in phosphate buffer saline solution. Corrosion Sci, 2013, 69: 226–235

    Article  CAS  Google Scholar 

  23. Li KK, Wang B, Yan B, et al. Preparing Ca-P coating on biodegradable magnesium alloy by hydrothermal method: in vitro degradation behavior. Chin Sci Bull, 2012, 57: 2319–2322

    Article  CAS  Google Scholar 

  24. Peng F, Wang D, Ma X, et al. “Petal effect”-inspired superhydrophobic and highly adhesive coating on magnesium with enhanced corrosion resistance and biocompatibility. Sci China Mater, 2018, 61: 629–642

    Article  Google Scholar 

  25. Sternberg K, Gratz M, Koeck K, et al. Magnesium used in bioabsorbable stents controls smooth muscle cell proliferation and stimulates endothelial cells in vitro. J Biomed Mater Res, 2012, 100B: 41–50

    Article  CAS  Google Scholar 

  26. Bornapour M, Mahjoubi H, Vali H, et al. Surface characterization, in vitro and in vivo biocompatibility of Mg-0.3Sr-0.3Ca for temporary cardiovascular implant. Mater Sci Eng-C, 2016, 67: 72–84

    Article  CAS  Google Scholar 

  27. Xin Y, Hu T, Chu PK. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater, 2011, 7: 1452–1459

    Article  CAS  Google Scholar 

  28. Hong D, Saha P, Chou DT, et al. In vitro degradation and cytotoxicity response of Mg–4%Zn–0.5%Zr (ZK40) alloy as a potential biodegradable material. Acta Biomater, 2013, 9: 8534–8547

    Article  CAS  Google Scholar 

  29. Testa L, De Carlo M, Petrolini A, et al. Sustained safety and clinical performance of a drug-eluting absorbable metal scaffold up to 24 months: pooled outcomes of BIOSOLVE-II and BIOSOLVE-III. EuroIntervention, 2017, 13: 432–439

    Article  Google Scholar 

  30. Mao L, Shen L, Chen J, et al. A promising biodegradable magnesium alloy suitable for clinical vascular stent application. Sci Rep, 2017, 7: 46343

    Article  CAS  Google Scholar 

  31. Bornapour M, Muja N, Shum-Tim D, et al. Biocompatibility and biodegradability of Mg–Sr alloys: the formation of Sr-substituted hydroxyapatite. Acta Biomater, 2013, 9: 5319–5330

    Article  CAS  Google Scholar 

  32. Deng CZ, Radhakrishnan R, Larsen SR, et al. Magnesium alloys for bioabsorbable stents: a feasibility assessment. In: Sillekens WH, Agnew SR, Neelameggham NR, Mathaudhu SN (eds). Magnesium Technology. Cham: Springer International Publishing, 2011

  33. Slottow TLP, Pakala R, Okabe T, et al. Optical coherence tomography and intravascular ultrasound imaging of bioabsorbable magnesium stent degradation in porcine coronary arteries. Cardiovasc Revasc Med, 2008, 9: 248–254

    Article  Google Scholar 

  34. Loos A, Rohde R, Haverich A, et al. In vitro and in vivo biocompatibility testing of absorbable metal stents. Macromol Symp, 2007, 253: 103–108

    Article  CAS  Google Scholar 

  35. Waksman R, Pakala R, Okabe T, et al. Efficacy and safety of absorbable metallic stents with adjunct intracoronary beta radiation in porcine coronary arteries. J Interven Cardiology, 2007, 20: 367–372

    Article  Google Scholar 

  36. Waksman R, Pakala R, Kuchulakanti PK, et al. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Cathet Cardiovasc Intervent, 2006, 68: 607–617

    Article  Google Scholar 

  37. Yan X, Han D, Yang R, et al. Biodegradable covered magnesium alloys stent for a lateral aneurysm model in common carotid artery in rabbits. Chin J Radiol, 2015, 49: 138–142

    Google Scholar 

  38. Lu CL, Dong HY, Wang W, et al. In vivo and in vitro studies of biodegradable WE43 stent. AMM, 2014, 528: 70–76

    Article  CAS  Google Scholar 

  39. Li H, Zhong H, Xu K, et al. Enhanced efficacy of sirolimus-eluting bioabsorbable magnesium alloy stents in the prevention of restenosis. J Endovascular Ther, 2011, 18: 407–415

    Article  CAS  Google Scholar 

  40. Waksman R, Zumstein P, Pritsch M, et al. Second-generation magnesium scaffold Magmaris: device design and preclinical evaluation in a porcine coronary artery model. EuroIntervention, 2017, 13: 440–449

    Article  Google Scholar 

  41. Peeters P, Bosiers M, Verbist J, et al. Preliminary results after application of absorbable metal stents in patients with critical limb ischemia. J Endovascular Ther, 2005, 12: 1–5

    Article  Google Scholar 

  42. Ghimire G, Spiro J, Kharbanda R, et al. Initial evidence for the return of coronary vasoreactivity following the absorption of bioabsorbable magnesium alloy coronary stents. EuroIntervention, 2009, 4: 481–484

    Article  Google Scholar 

  43. Haude M, Erbel R, Erne P, et al. Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. Lancet, 2013, 381: 836–844

    Article  CAS  Google Scholar 

  44. Bosiers M, Peeters P, D'Archambeau O, et al. AMS INSIGHT— Absorbable metal stent implantation for treatment of below-theknee critical limb ischemia: 6-month analysis. Cardiovasc Intervent Radiol, 2009, 32: 424–435

    Article  Google Scholar 

  45. Waksman R, Erbel R, Di Mario C, et al. Early-and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries. JACC-Cardiovascular Interventions, 2009, 2: 312–320

    Article  Google Scholar 

  46. Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet, 2007, 369: 1869–1875

    Article  CAS  Google Scholar 

  47. McMahon CJ, Oslizlok P, Walsh KP. Early restenosis following biodegradable stent implantation in an aortopulmonary collateral of a patient with pulmonary atresia and hypoplastic pulmonary arteries. Cathet Cardiovasc Intervent, 2007, 69: 735–738

    Article  Google Scholar 

  48. Barlis P, Tanigawa J, Di Mario C. Coronary bioabsorbable magnesium stent: 15-month intravascular ultrasound and optical coherence tomography findings. Eur Heart J, 2007, 28: 2319–2319

    Article  Google Scholar 

  49. Zartner P, Buettner M, Singer H, et al. First biodegradable metal stent in a child with congenital heart disease: Evaluation of macro and histopathology. Cathet Cardiovasc Intervent, 2007, 69: 443–446

    Article  Google Scholar 

  50. Schranz D, Zartner P, Michel-Behnke I, et al. Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn. Cathet Cardiovasc Intervent, 2006, 67: 671–673

    Article  Google Scholar 

  51. Mochizuki A, Yahata C, Takai H. Cytocompatibility of magnesium and AZ31 alloy with three types of cell lines using a direct in vitro method. J Mater Sci-Mater Med, 2016, 27: 145

    Article  CAS  Google Scholar 

  52. Scheideler L, Füger C, Schille C, et al. Comparison of different in vitro tests for biocompatibility screening of Mg alloys. Acta Biomater, 2013, 9: 8740–8745

    Article  CAS  Google Scholar 

  53. Zhen Z, Liu X, Huang T, et al. Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys. Mater Sci Eng-C, 2015, 46: 202–206

    Article  CAS  Google Scholar 

  54. Hänzi AC, Gerber I, Schinhammer M, et al. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. Acta Biomater, 2010, 6: 1824–1833

    Article  CAS  Google Scholar 

  55. Li L, Gao J, Wang Y. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surf Coatings Tech, 2004, 185: 92–98

    Article  CAS  Google Scholar 

  56. Li Z, Gu X, Lou S, et al. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials, 2008, 29: 1329–1344

    Article  CAS  Google Scholar 

  57. Zhang Y, Tao HR, He YH, et al. Cytotoxicity and hemolytic properties of biodegradable Mg-Zn alloy. J Clin Rehabilitat Tissue Eng Res, 2008,12: 8162–8166

    CAS  Google Scholar 

  58. Xin Y, Jiang J, Huo K, et al. Corrosion resistance and cytocompatibility of biodegradable surgical magnesium alloy coated with hydrogenated amorphous silicon. J Biomed Mater Res, 2009, 89A: 717–726

    Article  CAS  Google Scholar 

  59. Yun YH, Dong Z, Yang D, et al. Biodegradable Mg corrosion and osteoblast cell culture studies. Mater Sci Eng-C, 2009, 29: 1814–1821

    Article  CAS  Google Scholar 

  60. Zhang E, Yin D, Xu L, et al. Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Mater Sci Eng-C, 2009, 29: 987–993

    Article  CAS  Google Scholar 

  61. Zhang S, Li J, Song Y, et al. In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy. Mater Sci Eng-C, 2009, 29: 1907–1912

    Article  CAS  Google Scholar 

  62. Cipriano AF, Sallee A, Guan RG, et al. Investigation of magnesium–zinc–calcium alloys and bone marrow derived mesenchymal stem cell response in direct culture. Acta Biomater, 2015, 12: 298–321

    Article  CAS  Google Scholar 

  63. Fischer J, Pröfrock D, Hort N, et al. Improved cytotoxicity testing of magnesium materials. Mater Sci Eng-B, 2011, 176: 830–834

    Article  CAS  Google Scholar 

  64. Wang J, Witte F, Xi T, et al. Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. Acta Biomater, 2015, 21: 237–249

    Article  CAS  Google Scholar 

  65. Jung O, Smeets R, Porchetta D, et al. Optimized in vitro procedure for assessing the cytocompatibility of magnesium-based biomaterials. Acta Biomater, 2015, 23: 354–363

    Article  CAS  Google Scholar 

  66. Kirkpatrick CJ, Mittermayer C. Theoretical and practical aspects of testing potential biomaterials in vitro. J Mater Sci-Mater Med, 1990, 1: 9–13

    Article  Google Scholar 

  67. Johnson I, Perchy D, Liu H. In vitro evaluation of the surface effects on magnesium-yttrium alloy degradation and mesenchymal stem cell adhesion. J Biomed Mater Res, 2012, 100A: 477–485

    Article  CAS  Google Scholar 

  68. Huan ZG, Leeflang MA, Zhou J, et al. In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys. J Mater Sci-Mater Med, 2010, 21: 2623–2635

    Article  CAS  Google Scholar 

  69. Keim S, Brunner JG, Fabry B, et al. Control of magnesium corrosion and biocompatibility with biomimetic coatings. J Biomed Mater Res, 2011, 96B: 84–90

    Article  CAS  Google Scholar 

  70. Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 2006, 27: 1013–1018

    Article  CAS  Google Scholar 

  71. Lorenz C, Brunner JG, Kollmannsberger P, et al. Effect of surface pre-treatments on biocompatibility of magnesium. Acta Biomater, 2009, 5: 2783–2789

    Article  CAS  Google Scholar 

  72. Song G. Recent progress in corrosion and protection of magnesium alloys. Adv Eng Mater, 2005, 7: 563–586

    Article  CAS  Google Scholar 

  73. Zeng R, Dietzel W, Witte F, et al. Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater, 2008, 10: B3–B14

    Article  CAS  Google Scholar 

  74. Fischer J, Prosenc MH, Wolff M, et al. Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays. Acta Biomater, 2010, 6: 1813–1823

    Article  CAS  Google Scholar 

  75. Zhao Y, Jamesh MI, Li WK, et al. Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasmamodified biodegradable magnesium alloys. Acta Biomater, 2014, 10: 544–556

    Article  CAS  Google Scholar 

  76. Chung TW, Liu DZ, Wang SY, et al. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials, 2003, 24: 4655–4661

    Article  CAS  Google Scholar 

  77. Wagener V, Schilling A, Mainka A, et al. Cell adhesion on surface-functionalized magnesium. ACS Appl Mater Interfaces, 2016, 8: 11998–12006

    Article  CAS  Google Scholar 

  78. Zheng YF, Zhou W, Gu X. Degradation and cytotoxicity of lotustype porous Mg scaffold. Tissue Engineering and Regenerative Medicine International Society–EU Meeting. Galway, Ireland, 2010

    Google Scholar 

  79. Fan J, Qiu X, Niu X, et al. Microstructure, mechanical properties, in vitro degradation and cytotoxicity evaluations of Mg–1.5Y–1.2Zn–0.44Zr alloys for biodegradable metallic implants. Mater Sci Eng-C, 2013, 33: 2345–2352

    Article  CAS  Google Scholar 

  80. Zhao N, Zhu D. Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials. Metallomics, 2015, 7: 118–128

    Article  CAS  Google Scholar 

  81. Cipriano AF, Sallee A, Tayoba M, et al. Cytocompatibility and early inflammatory response of human endothelial cells in direct culture with Mg-Zn-Sr alloys. Acta Biomater, 2017, 48: 499–520

    Article  CAS  Google Scholar 

  82. Maier JAM, Bernardini D, Rayssiguier Y, et al. High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. BioChim Biophysica Acta (BBA) -Mol Basis Dis, 2004, 1689: 6–12

    Article  CAS  Google Scholar 

  83. Anderson JM. Chapter 4 Mechanisms of inflammation and infection with implanted devices. Cardiovascular Pathology, 1993, 2: 33S–41S

    Article  Google Scholar 

  84. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Seminars Immunol, 2008, 20: 86–100

    Article  CAS  Google Scholar 

  85. Malpuech-Brugère C, Nowacki W, Daveau M, et al. Inflammatory response following acute magnesium deficiency in the rat. Bio-Chim Biophysica Acta (BBA) -Mol Basis Dis, 2000, 1501: 91–98

    Article  Google Scholar 

  86. Malpuech-Brugère C, Nowacki W, Rock E, et al. Enhanced tumor necrosis factor-α production following endotoxin challenge in rats is an early event during magnesium deficiency. BioChim Biophysica Acta (BBA) -Mol Basis Dis, 1999, 1453: 35–40

    Article  Google Scholar 

  87. Li HF, Xie XH, Zhao K, et al. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass. Acta Biomater, 2013, 9: 8561–8573

    Article  CAS  Google Scholar 

  88. Chen Y, Yan J, Wang X, et al. In vivo and in vitro evaluation of effects of Mg-6Zn alloy on apoptosis of common bile duct epithelial cell. Biometals, 2014, 27: 1217–1230

    Article  CAS  Google Scholar 

  89. Zhang J, Kong N, Niu J, et al. Influence of fluoride treatment on surface properties, biodegradation and cytocompatibility of Mg–Nd–Zn–Zr alloy. J Mater Sci-Mater Med, 2014, 25: 791–799

    Article  CAS  Google Scholar 

  90. BS Institution. Biological evaluation of medical devices. Sample preparation and reference materials. ISO 10993–12:2007

    Google Scholar 

  91. Waksman R. Biodegradable stents: they do their job and disappear. J Invasive Cardiol, 2006, 18: 70–74

    Google Scholar 

  92. Di Mario C, Griffiths H, Goktekin O, et al. Drug-eluting bioabsorbable magnesium stent. J Interv Cardiol, 2004, 17: 391–395

    Article  Google Scholar 

  93. Cook-Mills JM, Marchese ME, Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxidants Redox Signal, 2011, 15: 1607–1638

    Article  CAS  Google Scholar 

  94. Northup SJ. Safety evaluation of medical devices: US Food and Drug Administration and International Standards Organization Guidelines. Int J Toxicol, 1999, 18: 275–283

    Article  Google Scholar 

  95. Nguyen TY, Liew CG, Liu H. An in vitro mechanism study on the proliferation and pluripotency of human embryonic stems cells in response to magnesium degradation. PLoS ONE, 2013, 8: e76547

    Article  CAS  Google Scholar 

  96. Rochelson B, Dowling O, Schwartz N, et al. Magnesium sulfate suppresses inflammatory responses by human umbilical vein endothelial cells (HuVECs) through the NFκB pathway. J Reproductive Immunol, 2007, 73: 101–107

    Article  CAS  Google Scholar 

  97. Wang YB, Xie XH, Li HF, et al. Biodegradable CaMgZn bulk metallic glass for potential skeletal application. Acta Biomater, 2011, 7: 3196–3208

    Article  CAS  Google Scholar 

  98. Gu X, Zheng Y, Zhong S, et al. Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials, 2010, 31: 1093–1103

    Article  CAS  Google Scholar 

  99. Witte F, Ulrich H, Rudert M, et al. Biodegradable magnesium scaffolds: Part 1: Appropriate inflammatory response. J Biomed Mater Res, 2007, 81A: 748–756

    Article  CAS  Google Scholar 

  100. Lai JCK, Lai MB, Sirisha J, et al. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts. Int J Nanomedicine, 2008, 3: 533–545

    CAS  Google Scholar 

  101. Zhao N, Watson N, Xu Z, et al. In vitro biocompatibility and endothelialization of novel magnesium-rare earth alloys for improved stent applications. PLoS ONE, 2014, 9: e98674

    Article  CAS  Google Scholar 

  102. Yang L, Hort N, Willumeit R, et al. Effects of corrosion environment and proteins on magnesium corrosion. Corrosion Eng Sci Tech, 2012, 47: 335–339

    Article  CAS  Google Scholar 

  103. Jang Y, Collins B, Sankar J, et al. Effect of biologically relevant ions on the corrosion products formed on alloy AZ31B: An improved understanding of magnesium corrosion. Acta Biomater, 2013, 9: 8761–8770

    Article  CAS  Google Scholar 

  104. Feyerabend F, Wendel HP, Mihailova B, et al. Blood compatibility of magnesium and its alloys. Acta Biomater, 2015, 25: 384–394

    Article  CAS  Google Scholar 

  105. Zhou WR, Zheng YF, Leeflang MA, et al. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg–Li–(Al)–(RE) alloys for future cardiovascular stent application. Acta Biomater, 2013, 9: 8488–8498

    Article  CAS  Google Scholar 

  106. Zhou YL, Li Y, Luo DM, et al. Microstructures, mechanical and corrosion properties and biocompatibility of as extruded Mg–Mn–Zn–Nd alloys for biomedical applications. Mater Sci Eng-C, 2015, 49: 93–100

    Article  CAS  Google Scholar 

  107. Zhang S, Zhang X, Zhao C, et al. Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater, 2010, 6: 626–640

    Article  CAS  Google Scholar 

  108. Wang J, Smith CE, Sankar J, et al. Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments. Regen Biomater, 2015, 2: 59–69

    Article  CAS  Google Scholar 

  109. Kirkland NT, Birbilis N, Staiger MP. Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomater, 2012, 8: 925–936

    Article  CAS  Google Scholar 

  110. Wang J, Giridharan V, Shanov V, et al. Flow-induced corrosion behavior of absorbable magnesium-based stents. Acta Biomater, 2014, 10: 5213–5223

    Article  CAS  Google Scholar 

  111. Wang J, Liu L, Wu Y, et al. Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration. Acta Biomater, 2017, 50: 546–555

    Article  CAS  Google Scholar 

  112. Wang J, Huang N, Yun Y, Sankar J. Flow Induced biodegradation behavior of magnesium metal: from bioreactors to in vivo models. In: Singh A, Solanki K, Manuel MV and Neelameggham NR (eds). Magnesium Technology 2016. Hoboken: John Wiley & Sons, 2016

  113. Berridge MV, Tan AS, McCoy KD, Wang R. The biochemical and cellular basis of cell proliferation assays that use tetrazo lium salts. Biochemica, 1996, 4: 14–19

    Google Scholar 

  114. Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev, 2005, 11: 127–152

    Article  CAS  Google Scholar 

  115. Roehm NW, Rodgers GH, Hatfield SM, et al. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods, 1991, 142: 257–265

    Article  CAS  Google Scholar 

  116. Mukhametkaliyev T, Surmeneva M, Surmenev R, Mathan BK. Hydroxyapatite coating on biodegradable AZ31 and Mg-Ca alloys prepared by RF-magnetron sputtering. AIP Conf Proceed, 2015, 1688: 030006

    Article  CAS  Google Scholar 

  117. Lin X, Tan L, Zhang Q, et al. The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsteritecontaining micro-arc oxidation coating. Acta Biomater, 2013, 9: 8631–8642

    Article  CAS  Google Scholar 

  118. Plumb JA, Milroy R, Kaye SB. Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromideformazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res, 1989, 49: 4435–4440

    CAS  Google Scholar 

  119. Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. J Immunol Methods, 1983, 64: 313–320

    Article  CAS  Google Scholar 

  120. Labarca C, Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem, 1980, 102: 344–352

    Article  CAS  Google Scholar 

  121. Low AF, Tearney GJ, Bouma BE, et al. Technology insight: optical coherence tomography—current status and future development. Nat Rev Cardiol, 2006, 3: 154–162

    Article  Google Scholar 

  122. Rieber J, Meissner O, Babaryka G, et al. Diagnostic accuracy of optical coherence tomography and intravascular ultrasound for the detection and characterization of atherosclerotic plaque composition in ex-vivo coronary specimens: a comparison with histology. Coronary Artery Dis, 2006, 17: 425–430

    Article  Google Scholar 

  123. Chia S, Christopher Raffel O, Takano M, et al. In-vivo comparison of coronary plaque characteristics using optical coherence tomography in women vs. men with acute coronary syndrome. Coronary Artery Dis, 2007, 18: 423–427

    Article  Google Scholar 

  124. Maeng M, Jensen LO, Falk E, et al. Negative vascular remodelling after implantation of bioabsorbable magnesium alloy stents in porcine coronary arteries: a randomised comparison with baremetal and sirolimus-eluting stents. Heart, 2009, 95: 241–246

    Article  CAS  Google Scholar 

  125. Ravn HB. Pharmacological effects of magnesium on arterial thrombosis–mechanisms of action? Magnes Res, 1999, 12: 191–199

    CAS  Google Scholar 

  126. Pierson D, Edick J, Tauscher A, et al. A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. J Biomed Mater Res, 2012, 100B: 58–67

    Article  CAS  Google Scholar 

  127. Bowen PK, Drelich J, Goldman J. Magnesium in the murine artery: Probing the products of corrosion. Acta Biomater, 2014, 10: 1475–1483

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31600766, 21473138 and 81330031), and the Fundamental Research Funds for the Central Universities (No. 2682016CX076).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Wang  (王娟) or Nan Huang  (黄楠).

Additional information

Ping Li was born in 1992. She is now pursuing her master degree in the School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan. Her research interest is about the optimization of evaluation methods of biodegradable magnesium-based stent.

Juan Wang is currently a postdoctoral fellow at the School of Medicine, Yale University. She was an associate research scientist at the School of Materials and Engineering, Southwest Jiaotong University. She received her PhD degree in material science from Southwest Jiaotong University. She was a joint-PhD student at National Science Foundation Engineering Research Center for Revolutionizing Metallic Biomaterials, NC, US. Her research interests mainly focus on absorbable metallic vascular stent, and tissue engineering vascular graft, bioreactors, etc.

Nan Huang is a full professor at Southwest Jiaotong University. He received his master degree in materials science from Southwest Jiaotong University in 1985, and worked as research fellow and Guest Professor in University of Erlangen, Germany and Rossendorf Research Center, Germany from 1989–1991 and 1998–1999 respectively. His research interests include surface and interface of biomaterials, biodegradable biomaterials, cardiovascular devices. He is an inventor of a stent which has been applied in clinic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Zhou, N., Qiu, H. et al. In vitro and in vivo cytocompatibility evaluation of biodegradable magnesium-based stents: a review. Sci. China Mater. 61, 501–515 (2018). https://doi.org/10.1007/s40843-017-9194-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-017-9194-y

Keywords

Navigation