Skip to main content
Log in

Topological quantum catalyst: Dirac nodal line states and a potential electrocatalyst of hydrogen evolution in the TiSi family

拓扑量子催化: TiSi家族的拓扑节线态和潜在催化析氢性能

  • Concept
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Topological nodal line (DNL) semimetals, a closed loop of the inverted bands in its bulk phases, result in the almost flat drumhead-like non-trivial surface states (DNSSs) with an unusually high electronic density near the Fermi level. High catalytic active sites generally associated with high electronic densities around the Fermi level, high carrier mobility and a close-to-zero free energy of the adsorbed state of hydrogen (ΔGH*≈0) are prerequisite to design alternative of precious platinum for catalyzing electrochemical hydrogen production from water. By combining these two aspects, it is natural to consider if the DNLs are a good candidate for the hydrogen evolution reaction (HER) or not because its DNSSs provide a robust platform to activate chemical reactions. Here, through first-principles calculations we reported a new DNL TiSi-type family, exhibiting a closed Dirac nodal line due to the linear band crossings in k y =0 plane. The hydrogen adsorbed state on the surface yields ΔGH* to be almost zero and the topological charge carries participate in HER. The results highlight a new routine to design topological quantum catalyst utilizing the topological DNL-induced surface bands as active sites, rather than edge sites-, vacancy-, dopant-, strain-, or heterostructure-created active sites.

摘要

拓扑节线半金属具有体能带反转形成的闭合环状狄拉克节线. 体狄拉克节线投影到某些表面会形成闭合的圈, 圈内会出现受拓扑保护的能量色散非常小的鼓膜状表面态, 导致在费米能级具有高的电子密度. 目前, 为寻求贵金属铂的替代物, 新的析氢反应催化剂需要具有高电子密度的催化活性位置, 高的载流子移动性和恰当的热力学稳定性(ΔG≈0). 由鉴于此, 我们考虑具有稳定拓扑非平庸表面态的狄拉克节线半金属是否可以作为析氢催化的平台. 基于第一性原理计算, 我们提出TiSi型拓扑节线态半金属新家族. 在其倒空间k y =0面, 反转的两条能带相交形成闭合的狄拉克节线环. 氢吸附过程计算表明, 拓扑狄拉克节线完整投影的(010)表面氢吸附自由能ΔG几乎为0. 并且,拓扑电荷载流子也参与到了析氢过程. 综上, 我们提出拓扑狄拉克节线系统可以利用其鼓膜类拓扑表面态作为拓扑量子催化的平台, 并认为TiSi家族材料有望成为析氢反应的催化剂, 这种催化设计路线主要利用拓扑节线材料非平庸鼓膜类表面态作为催化活性位置, 与以往传统通过缺陷、界面修饰和构筑等调控催化剂存在本质不同.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zahid Hasan M, Xu SY, Bian G. Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks. Phys Scr, 2015, T164: 014001

    Article  Google Scholar 

  2. Young SM, Zaheer S, Teo JCY, et al. Dirac semimetal in three dimensions. Phys Rev Lett, 2012, 108: 140405

    Article  Google Scholar 

  3. Wang Z, Sun Y, Chen XQ, et al. Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb). Phys Rev B, 2012, 85: 195320

    Article  Google Scholar 

  4. Liu ZK, Zhou B, Zhang Y, et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science, 2014, 343: 864–867

    Article  Google Scholar 

  5. Cheng X, Li R, Sun Y, et al. Ground-state phase in the threedimensional topological Dirac semimetal Na3Bi. Phys Rev B, 2014, 89: 245201

    Article  Google Scholar 

  6. Xu SY, Liu C, Kushwaha SK, et al. Observation of Fermi arc surface states in a topological metal. Science, 2015, 347: 294–298

    Article  Google Scholar 

  7. Wang Z, Weng H, Wu Q, et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys Rev B, 2013, 88: 125427

    Article  Google Scholar 

  8. Neupane M, Xu SY, Sankar R, et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat Commun, 2014, 5: 3786

    Google Scholar 

  9. Liu ZK, Jiang J, Zhou B, et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat Mater, 2014, 13: 677–681

    Article  Google Scholar 

  10. Wan X, Turner AM, Vishwanath A, et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys Rev B, 2011, 83: 205101

    Article  Google Scholar 

  11. Weng H, Fang C, Fang Z, et al. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys Rev X, 2015, 5: 011029

    Google Scholar 

  12. Huang SM, Xu SY, Belopolski I, et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat Commun, 2015, 6: 7373

    Article  Google Scholar 

  13. Lv BQ, Weng HM, Fu BB, et al. Experimental discovery of Weyl semimetal TaAs. Phys Rev X, 2015, 5: 031013

    Google Scholar 

  14. Xu SY, Belopolski I, Alidoust N, et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science, 2015, 349: 613–617

    Article  Google Scholar 

  15. Liu ZK, Yang LX, Sun Y, et al. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nat Mater, 2015, 15: 27–31

    Article  Google Scholar 

  16. Chang G, Xu SY, Sanchez DS, et al. A strongly robust type II Weyl fermion semimetal state in Ta3S2. Sci Adv, 2016, 2: e1600295

    Article  Google Scholar 

  17. Koepernik K, Kasinathan D, Efremov DV, et al. TaIrTe4: a ternary type-II Weyl semimetal. Phys Rev B, 2016, 93: 201101

    Article  Google Scholar 

  18. Soluyanov AA, Gresch D, Wang Z, et al. Type-II Weyl semimetals. Nature, 2015, 527: 495–498

    Article  Google Scholar 

  19. Li FY, Luo X, Dai X, et al. Hybrid Weyl semimetal. Phys Rev B, 2016, 94: 121105

    Article  Google Scholar 

  20. Ruan J, Jian SK, Zhang D, et al. Ideal Weyl semimetals in the chalcopyrites CuTlSe2, AgTlTe2, AuTlTe2, and ZnPbAs2. Phys Rev Lett, 2016, 116: 226801

    Article  Google Scholar 

  21. Ruan J, Jian SK, Yao H, et al. Symmetry-protected ideal Weyl semimetal in HgTe-class materials. Nat Commun, 2016, 7: 11136

    Article  Google Scholar 

  22. Weng H, Fang C, Fang Z, et al. Coexistence of Weyl fermion and massless triply degenerate nodal points. Phys Rev B, 2016, 94: 165201

    Article  Google Scholar 

  23. Fang C, Weng H, Dai X, et al. Topological nodal line semimetals. Chin Phys B, 2016, 25: 117106

    Article  Google Scholar 

  24. Ryu S, Hatsugai Y. Topological origin of zero-energy edge states in particle-hole symmetric systems. Phys Rev Lett, 2002, 89: 077002

    Article  Google Scholar 

  25. Heikkilä TT, Volovik GE. Dimensional crossover in topological matter: evolution of the multiple Dirac point in the layered system to the flat band on the surface. Jetp Lett, 2011, 93: 59–65

    Article  Google Scholar 

  26. Burkov AA, Hook MD, Balents L. Topological nodal semimetals. Phys Rev B, 2011, 84: 235126

    Article  Google Scholar 

  27. Li R, Ma H, Cheng X, et al. Dirac node lines in pure alkali earth metals. Phys Rev Lett, 2016, 117: 096401

    Article  Google Scholar 

  28. Weng H, Liang Y, Xu Q, et al. Topological node-line semimetal in three-dimensional graphene networks. Phys Rev B, 2015, 92: 045108

    Article  Google Scholar 

  29. Yu R, Weng H, Fang Z, et al. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN. Phys Rev Lett, 2015, 115: 036807

    Article  Google Scholar 

  30. Kim Y, Wieder BJ, Kane CL, et al. Dirac line nodes in inversionsymmetric crystals. Phys Rev Lett, 2015, 115: 036806

    Article  Google Scholar 

  31. Xie LS, Schoop LM, Seibel EM, et al. A new form of Ca3P2 with a ring of Dirac nodes. APL Mater, 2015, 3: 083602

    Article  Google Scholar 

  32. Zeng MG, Fang C, Chang GQ, et al. Topological semimetals and topological insulators in rare earth monopnictides. arXiv: 1504.03492v1

  33. Lu L, Fu L, Joannopoulos JD, et al. Weyl points and line nodes in gyroid photonic crystals. Nat Photon, 2013, 7: 294–299

    Article  Google Scholar 

  34. Mullen K, Uchoa B, Glatzhofer DT. Line of Dirac nodes in hyperhoneycomb lattices. Phys Rev Lett, 2015, 115: 026403

    Article  Google Scholar 

  35. Gan LY, Wang R, Jin YJ, et al. Emergence of topological nodal loops in alkaline-earth hexaborides XB6 (X = Ca, Sr, and Ba) under pressure. Phys Chem Chem Phys, 2017, 19: 8210–8215

    Article  Google Scholar 

  36. Kawakami T, Hu X. Symmetry-guaranteed and accidental nodalline semimetals in FCC lattice. arXiv: 1611.07342v2

  37. Yang B, Zhou H, Zhang X, et al. Dirac cones and highly anisotropic electronic structure of super-graphyne. Carbon, 2017, 113: 40–45

    Article  Google Scholar 

  38. Chang G, Xu SY, Zheng H, et al. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in halfmetallic Heusler Co2TiX (X=Si, Ge, or Sn). Sci Rep, 2016, 6: 38839

    Article  Google Scholar 

  39. Bradlyn B, Cano J, Wang Z, et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science, 2016, 353: aaf5037

    Article  Google Scholar 

  40. Rhim JW, Kim YB. Landau level quantization and almost flat modes in three-dimensional semimetals with nodal ring spectra. Phys Rev B, 2015, 92: 045126

    Article  Google Scholar 

  41. Huh Y, Moon EG, Kim YB. Long-range Coulomb interaction in nodal-ring semimetals. Phys Rev B, 2016, 93: 035138

    Article  Google Scholar 

  42. Wu Y, Wang LL, Mun E, et al. Dirac node arcs in PtSn4. Nat Phys, 2016, 12: 667–671

    Article  Google Scholar 

  43. Bian G, Chang TR, Zheng H, et al. Drumhead surface states and topological nodal-line fermions in TlTaSe2. Phys Rev B, 2016, 93: 121113

    Article  Google Scholar 

  44. Bian G, Chang TR, Sankar R, et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat Commun, 2016, 7: 10556

    Article  Google Scholar 

  45. Schoop LM, Ali MN, Straßer C, et al. Dirac cone protected by nonsymmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat Commun, 2016, 7: 11696

    Article  Google Scholar 

  46. Neupane M, Belopolski I, Hosen MM, et al. Observation of topological nodal fermion semimetal phase in ZrSiS. Phys Rev B, 2016, 93: 201104

    Article  Google Scholar 

  47. Hu J, Tang Z, Liu J, et al. Evidence of topological nodal-line fermions in ZrSiSe and ZrSiTe. Phys Rev Lett, 2016, 117: 016602

    Article  Google Scholar 

  48. Feng BJ, Fu BT, Kasamatsu S, et al. Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si. Nat Commun, 2017, 8: 1007

    Article  Google Scholar 

  49. Chen H, Zhu W, Xiao D, et al. CO oxidation facilitated by robust surface states on Au-covered topological insulators. Phys Rev Lett, 2011, 107: 056804

    Article  Google Scholar 

  50. Rajamathi CR, Gupta U, Kumar N, et al. Weyl semimetals as hydrogen evolution catalysts. Adv Mater, 2017, 29: 1606202

    Article  Google Scholar 

  51. Nørskov JK, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution. J Electrochem Soc, 2005, 152: J23

    Article  Google Scholar 

  52. Hinnemann B, Moses PG, Bonde J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc, 2005, 127: 5308–5309

    Article  Google Scholar 

  53. Jaramillo TF, Jørgensen KP, Bonde J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science, 2007, 317: 100–102

    Article  Google Scholar 

  54. Nørskov JK, Bligaard T, Rossmeisl J, et al. Towards the computational design of solid catalysts. Nat Chem, 2009, 1: 37–46

    Article  Google Scholar 

  55. Voiry D, Yamaguchi H, Li J, et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater, 2013, 12: 850–855

    Article  Google Scholar 

  56. Qu Y, Pan H, Kwok CT, et al. Effect of doping on hydrogen evolution reaction of vanadium disulfide monolayer. Nanoscale Res Lett, 2015, 10: 480

    Article  Google Scholar 

  57. Greeley J, Nørskov JK, Kibler LA, et al. Hydrogen evolution over bimetallic systems: understanding the trends. ChemPhysChem, 2006, 7: 1032–1035

    Article  Google Scholar 

  58. Zhang F, Shi Y, Xue T, et al. In situ electrochemically converting Fe2O3-Ni(OH)2 to NiFe2O4-NiOOH: a highly efficient electrocatalyst towards water oxidation. Sci China Mater, 2017, 60: 324–334

    Article  Google Scholar 

  59. Zhang J, Chen M, Chen J, et al. Synthesis of single-crystal hyperbranched rhodium nanoplates with remarkable catalytic properties. Sci China Mater, 2017, 60: 685–696

    Article  Google Scholar 

  60. Liu S, Zhang X, Zhang J, et al. MoS2 with tunable surface structure directed by thiophene adsorption toward HDS and HER. Sci China Mater, 2016, 59: 1051–1061

    Article  Google Scholar 

  61. Greeley J, Jaramillo TF, Bonde J, et al. Computational highthroughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater, 2006, 5: 909–913

    Article  Google Scholar 

  62. Li H, Tsai C, Koh AL, et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater, 2016, 15: 48–53

    Article  Google Scholar 

  63. Voiry D, Fullon R, Yang J, et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat Mater, 2016, 15: 1003–1009

    Article  Google Scholar 

  64. Conway BE, Tilak BV. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim Acta, 2002, 47: 3571–3594

    Article  Google Scholar 

  65. Supplemental Materials (1) computational details ([52,61,71–80]), (2) comparison of DFT optimized lattice constants with available experimental data, (3) band inversion in TiSi, (4) DNLs in TiSifamily, (5) Dirac nodal lines and Surface band structures in ZrSi and TiGe, (6) evolution of thickness-dependent surface electronic band structures of the TiSi (010) surface, and (7) computations of hydrogen adsorption on the TiSi surfaces

  66. Agarwal S, Cotts EJ, Zarembo S, et al. The heat capacities of titanium silicides Ti5Si3, TiSi and TiSi2. J Alloys Compd, 2001, 314: 99–102

    Article  Google Scholar 

  67. Samsonov GV, Podgrushko NF, Dvorina LA. Thermal-conductivity of silicide phases of transition-metals of groups IV-VI. Inorg Mater, 1977, 13: 1429–1431

    Google Scholar 

  68. Samsonov GV, Okhremchuk LN, Podgrushko NF, et al. Relations between electron work function and certain physical-properties in silicides of group-IV transition-metals. Inorg Mater, 1976, 12: 720–722

    Google Scholar 

  69. Brukl C, Nowotny H, Schob O, et al. Die Kristallstruckturen von TiSi, Ti(Al,Si)2 und Mo(Al,Si)2. Monatshefte für Chem, 1961, 92: 781–788

    Article  Google Scholar 

  70. Fu L, Kane CL, Mele EJ. Topological insulators in three dimensions. Phys Rev Lett, 2007, 98: 106803

    Article  Google Scholar 

  71. Soluyanov AA, Vanderbilt D. Computing topological invariants without inversion symmetry. Phys Rev B, 2011, 83: 235401

    Article  Google Scholar 

  72. Yu R, Qi XL, Bernevig A, et al. Equivalent expression of Z2 topological invariant for band insulators using the non-Abelian Berry connection. Phys Rev B, 2011, 84: 075119

    Article  Google Scholar 

  73. Sun Y, Wang QZ, Wu SC, et al. Pressure-induced topological insulator in NaBaBi with right-handed surface spin texture. Phys Rev B, 2016, 93: 205303

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (51725103), the National Natural Science Foundation of China (51671193 and 51474202), and the Science Challenging Project (TZ2016004). All calculations have been performed on the high-performance computational cluster in Shenyang National University Science and Technology Park and the National Supercomputing Center in Guangzhou (TH-2 system) with special program for applied research of the NSFC-Guangdong Joint Fund (the second phase) (U1501501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Qiu Chen  (陈星秋).

Additional information

Author contributions Chen XQ designed and supervised the project. Li J, Xie Q, Li R, Ullah S performed the DFT calculations of structural optimizations, electronic structures for all compounds. Li J performed the calculations of tight-binding modeling and surface states for DNLs. Ma H and Li J performed the calculations of hydrogen evolution reaction. Chen XQ analyzed results and wrote the paper with the inputs from Li J, Ma H, Ullah S, Li R. All authors including Li D, Dong J, Feng S and Li Y discussed the results and commented on the manuscript.

Conflict of interest The authors declare no conflict of interest.

Supplementary information The computational details, parameters, and any associated references are available in the supplementary material.

Jiangxu Li received his BSc degree from the Central South University in 2015. Now, he is a PhD candidate under the supervision of Prof. Xing-Qiu Chen at the Institute of Metal Research, Chinese Academy of Sciences, School of Materials Science and Engineering, University of Science and Technology of China. His research interest focuses on topological material design.

Hui Ma received her BSc degree from Hebei University of Technology in 2013. Now, she is a PhD candidate under the supervision of Prof. Junhua Dong and Prof. Xing-Qiu Chen at the Institute of Metal Research, Chinese Academy of Sciences, School of Materials Science and Engineering, University of Science and Technology of China. Her research interest focuses on electrochemical corrosion and catalysis.

Xing-Qiu Chen obtained his PhD degree in computational materials science at the University of Vienna in 2004 and completed his postdoctoral studies at Vienna Center of Computational Materials Science and Oak Ridge National Laboratory from 2005 to 2010. He is currently a professor at Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, funded by Hundred Talent Project and by the National Science Fund of Distinguished Young Scholars. His main scientific interests focus on the computational design of alloys including high-performance structural alloys, topological metals and alloys as well as the explorations of their potential applications.

Electronic supplementary material

40843_2017_9178_MOESM1_ESM.pdf

Topological quantum catalyst: Dirac nodal line states and a potential electrocatalyst of hydrogen evolution in the TiSi family

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Ma, H., Xie, Q. et al. Topological quantum catalyst: Dirac nodal line states and a potential electrocatalyst of hydrogen evolution in the TiSi family. Sci. China Mater. 61, 23–29 (2018). https://doi.org/10.1007/s40843-017-9178-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-017-9178-4

Keywords

Navigation