Skip to main content
Log in

Electrocatalysts for hydrogen oxidation and evolution reactions

氢气氧化/析出反应电催化剂

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The hydrogen economy is a clean, efficient, and sustainable energy system that delivers energy using hydrogen. Electrolyzers are used to generate hydrogen, and fuel cells consume hydrogen as a fuel. These devices rely on hydrogen evolution and oxidation reactions. Catalysts are required to accelerate the reactions. Pt is the best hydrogen oxidation/evolution reaction (HOR/HER) catalyst to date. However, the scarcity of Pt hinders its applications. Various processes have been developed to increase the catalyst activity in order to reduce the amount of Pt, or to develop non-precious metal catalysts to replace Pt. In this review, we focus on electrocatalysts for the hydrogen oxidation and evolution reactions. The reaction mechanism, factors influencing the catalyst activity, and the influence of the electrolyte (acid vs. base) are discussed. The recent advances in catalyst development, especially of non-precious metal catalysts, are also summarized. Due to the different reaction conditions and catalytic activities associated with the different electrolytes, the catalysts are classified into two categories: active in acid or in base.

摘要

氢经济以氢气作为能量载体, 是一个清洁、高效、可持续发展的能源体系. 电解池和燃料电池分别用于生产和消费氢气, 分别发生氢气析出反应和氢气氧化反应. 催化剂是加速这两个反应进程的关键. 铂是目前最好的氢气析出和氢气氧化反应的催化剂, 但是铂的稀有性阻碍了其实用化的进程. 因此, 开发更高活性的催化剂以减少铂用量, 或开发非贵金属催化剂替代铂成为了目前研究的重点. 本综述针对氢气析出与氢气氧化反应, 讨论了反应的机制、影响催化剂活性的因素以及电解质(酸性、碱性)对催化过程的影响, 并按照酸性条件适用和碱性条件适用总结了近年来在氢气析出与氢气氧化反应催化剂开发方面的进展.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bockris JOM. A hydrogen economy. Science, 1972, 176: 1323–1323

    Article  Google Scholar 

  2. Bockris JOM. Hydrogen economy in the future. Int J Hydrogen Energ, 1999, 24: 1–15

    Article  Google Scholar 

  3. Bockris JOM. The hydrogen economy: its history. Int J Hydrogen Energ, 2013, 38: 2579–2588

    Article  Google Scholar 

  4. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ, 2005, 56: 9–35

    Article  Google Scholar 

  5. Wang Y, Zhao N, Fang B, et al. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem Rev, 2015, 115: 3433–3467

    Article  Google Scholar 

  6. Dai L, Xue Y, Qu L, Choi H, Baek J. Metal-free catalysts for oxygen reduction reaction. Chem Rev, 2015, 115: 4823–4892

    Article  Google Scholar 

  7. Chen D, Chen C, Baiyee ZM, Shao Z, Ciucci F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem Rev, 2015, 115: 9869–9921

    Article  Google Scholar 

  8. Bing Y, Liu H, Zhang L, Ghosh D, Zhang J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev, 2010, 39: 2184–2202

    Article  Google Scholar 

  9. Nie Y, Li L, Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev, 2015, 44: 2168–2201

    Article  Google Scholar 

  10. Scofield ME, Liu H, Wong SS. A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes. Chem Soc Rev, 2015, 44: 5836–5860

    Article  Google Scholar 

  11. Varcoe JR, Atanassov P, Dekel DR, et al. Anion-exchange membranes in electrochemical energy systems. Energ Environ Sci, 2014, 7: 3135–3191

    Article  Google Scholar 

  12. Gasteiger HA, Markovic NM, Ross PN. H2 and CO Electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J Phys Chem, 1995, 99: 8290–8301

    Google Scholar 

  13. Zheng J, Zhuang Z, Xu B, Yan Y. Correlating hydrogen oxidation/ evolution reaction activity with the minority weak hydrogen-binding sites on Ir/C catalysts. ACS Catal, 2015, 5: 4449–4455

    Article  Google Scholar 

  14. Sheng W, Gasteiger HA, Yang SH. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs. alkaline electrolytes. J Electrochem Soc, 2010, 157: B1529–B1536

    Article  Google Scholar 

  15. Durst J, Simon C, Hasché F, Gasteiger HA. Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media. J Electrochem Soc, 2015, 162: F190–F203

    Article  Google Scholar 

  16. Durst J, Siebel A, Simon C, et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energ Environ Sci, 2014, 7: 2255–2260

    Article  Google Scholar 

  17. Neyerlin KC, Gu W, Jorne J, Gasteiger HA. Study of the exchange current density for the hydrogen oxidation and evolution reactions. J Electrochem Soc, 2007, 154: B631–B635

    Article  Google Scholar 

  18. Uchida H, Izumi K, Aoki K, Watanabe M. Temperature-dependence of hydrogen oxidation reaction rates and CO-tolerance at carbon-supported Pt, Pt-Co, and Pt-Ru catalysts. Phys Chem Chem Phys, 2009, 11: 1771–1779

    Article  Google Scholar 

  19. Zhou J, Zu Y, Bard AJ. Scanning electrochemical microscopy: Part 39. The proton/hydrogen mediator system and its application to the study of the electrocatalysis of hydrogen oxidation. J Electroanal Chem, 2000, 491: 22–29

    Google Scholar 

  20. Zoski CG. Scanning electrochemical microscopy: investigation of hydrogen oxidation at polycrystalline noble metal electrodes. J Phys Chem B, 2003, 107: 6401–6405

    Article  Google Scholar 

  21. Bagotzky VS, Osetrova NV. Investigations of hydrogen ionization on platinum with the help of micro-electrodes. J Electroanal Chem, 1973, 43: 233–249

    Google Scholar 

  22. Chen S, Kucernak A. Electrocatalysis under conditions of high mass transport: investigation of hydrogen oxidation on single submicron Pt particles supported on carbon. J Phys Chem B, 2004, 108: 13984–13994

    Article  Google Scholar 

  23. Kucernak AR, Toyoda E. Studying the oxygen reduction and hydrogen oxidation reactions under realistic fuel cell conditions. Electrochem Commun, 2008, 10: 1728–1731

    Article  Google Scholar 

  24. Zalitis CM, Kramer D, Kucernak AR. Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport. Phys Chem Chem Phys, 2013, 15: 4329–4340

    Article  Google Scholar 

  25. Sun Y, Lu J, Zhuang L. Rational determination of exchange current density for hydrogen electrode reactions at carbon-supported Pt catalysts. Electrochim Acta, 2010, 55: 844–850

    Article  Google Scholar 

  26. Barber J, Morin S, Conway BE. Specificity of the kinetics of H2 evolution to the structure of single-crystal Pt surfaces, and the relation between opd and upd H. J Electroanal Chem, 1998, 446: 125–138

    Article  Google Scholar 

  27. Strmcnik D, Uchimura M, Wang C, et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat Chem, 2013, 5: 300–306

    Article  Google Scholar 

  28. Trasatti S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J Electroanal Chem, 1972, 39: 163–184

    Google Scholar 

  29. Norskov JK, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution. J Electrochem Soc, 2005, 152: J23–J26

    Article  Google Scholar 

  30. Sheng W, Myint M, Chen JG, Yan Y. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energ Environ Sci, 2013, 6: 1509–1512

    Article  Google Scholar 

  31. Leonard KC, Bard AJ. Pattern recognition correlating materials properties of the elements to their kinetics for the hydrogen evolution reaction. J Am Chem Soc, 2013, 135: 15885–15889

    Article  Google Scholar 

  32. Durst J, Siebel A, Simon C, et al. New insights into the e lectrochemical hydrogen oxidation and evolution reaction mechanism. Energ Environ Sci, 2014, 7: 2255–2260

    Article  Google Scholar 

  33. Sheng W, Zhuang Z, Gao M, et al. Correlating hydrogen oxidation and evolution activity on pl atinum at different pH with measured hydrogen binding energy. Nat Commun, 2015, 6: 5848

    Article  Google Scholar 

  34. Zheng J, Sheng W, Zhuang Z, Xu B, Yan Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group-metals on pH and hydrogen binding energy. Sci Adv, 2016, 2: e1501602

    Article  Google Scholar 

  35. McCrory CCL, Jung S, Ferrer IM, et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc, 2015, 137: 4347–4357

    Article  Google Scholar 

  36. Zheng J, Yan Y, Xu B. Correcting the hydrogen diffusion limitation in rotating disk electrode measurements of hydrogen evolution reaction kinetics. J Electrochem Soc, 2015, 162: F1470–F1481

    Article  Google Scholar 

  37. Kong D, Wang H, Cha JJ, et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett, 2013, 13: 1341–1347

    Article  Google Scholar 

  38. Yang Y, Fei H, Ruan G, Xiang C, Tour JM. Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv Mater, 2014, 26: 8163–8168

    Article  Google Scholar 

  39. Lukowski MA, Daniel AS, Meng F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc, 2013, 135: 10274–10277

    Article  Google Scholar 

  40. Xie J, Zhang J, Li S, et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc, 2013, 135: 17881–17888

    Article  Google Scholar 

  41. Voiry D, Salehi M, Silva R, et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett, 2013, 13: 6222–6227

    Article  Google Scholar 

  42. Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater, 2012, 11: 963–969

    Article  Google Scholar 

  43. Li Y, Wang H, Xie L, et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc, 2011, 133: 7296–7299

    Article  Google Scholar 

  44. Chen Z, Cummins D, Reinecke BN, et al. Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett, 2011, 11: 4168–4175

    Article  Google Scholar 

  45. Xie J, Zhang H, Li S, et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater, 2013, 25: 5807–5813

    Article  Google Scholar 

  46. Lu Z, Zhu W, Yu X, et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes. Adv Mater, 2014, 26: 2683–2687

    Article  Google Scholar 

  47. Gao MR, Chan MKY, Sun Y. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat Commun, 2015, 6: 7493

    Article  Google Scholar 

  48. Yan Y, Xia B, Li N, et al. Vertically oriented MoS2 and WS2 nanosheets directly grown on carbon cloth as efficient and stable 3-dimensional hydrogen-evolving cathodes. J Mater Chem A, 2015, 3: 131–135

    Article  Google Scholar 

  49. Ge X, Chen L, Zhang L, et al. Nanoporous metal enhanced catalytic activities of amorphous molybdenum sulfide for high-efficiency hydrogen production. Adv Mater, 2014, 26: 3100–3104

    Article  Google Scholar 

  50. Wang T, Liu L, Zhu Z, et al. Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energ Environ Sci, 2013, 6: 625–633

    Article  Google Scholar 

  51. Cheng L, Huang W, Gong Q, et al. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angew Chem Int Ed, 2014, 53: 7860–7863

    Article  Google Scholar 

  52. Yang J, Voiry D, Ahn SJ, et al. Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew Chem Int Ed, 2013, 52: 13751–13754

    Article  Google Scholar 

  53. Voiry D, Yamaguchi H, Li J, et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater, 2013, 12: 850–855

    Article  Google Scholar 

  54. Duan J, Sheng C, Chambers BA, Andersson GG, Zhang QS. 3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes. Adv Mater, 2015, 27: 4234–4241

    Article  Google Scholar 

  55. Kong D, Cha JJ, Wang H, Lee HR, Cui Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energ Environ Sci, 2013, 6: 3553–3558

    Article  Google Scholar 

  56. Kong D, Wang H, Lu Z, Cui Y. CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J Am Chem Soc, 2014, 136: 4897–4900

    Article  Google Scholar 

  57. Faber MS, Dziedzic R, Lukowski MA, et al. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro-and nanostructures. J Am Chem Soc, 2014, 136: 10053–10061

    Article  Google Scholar 

  58. Long X, Li G, Wang Z, et al. Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. J Am Chem Soc, 2015, 137: 11900–11903

    Article  Google Scholar 

  59. Wang D, Gong M, Chou H, et al. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction. J Am Chem Soc, 2015, 137: 1587–1592

    Article  Google Scholar 

  60. Popczun EJ, McKone JR, Read CG, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc, 2013, 135: 9267–9270

    Article  Google Scholar 

  61. Zhuo J, Cabán- Acevedo M, Liang H, et al. High-performance electrocatalysis for hydrogen evolution reaction using Se-doped pyrite-phase nickel diphosphide nanostructures. ACS Catal, 2015, 5: 6355–6361

    Article  Google Scholar 

  62. Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew Chem Int Ed, 2014, 53: 5427–5430

    Article  Google Scholar 

  63. Yang H, Zhang Y, Hu F, Wang Q. Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Lett, 2015, 15: 7616–7620

    Article  Google Scholar 

  64. Tian J, Liu Q, Asiri AM, Sun X. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J Am Chem Soc, 2014, 136: 7587–7590

    Article  Google Scholar 

  65. Liu Q, Tian J, Cui W, et al. Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew Chem Int Ed, 2014, 53: 6710–6714

    Article  Google Scholar 

  66. Yang Y, Fei H, Ruan G, Tour JM. Porous cobalt-based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation. Adv Mater, 2015, 27: 3175–3180

    Article  Google Scholar 

  67. Jiang P, Liu Q, Liang Y, et al. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew Chem Int Ed, 2014, 53: 12855–12859

    Article  Google Scholar 

  68. Yan Y, Xia BY, Ge X, et al. A flexible electrode based on iron phosphide nanotubes for overall water splitting. Chem Eur J, 2015, 21: 18062–18067

    Article  Google Scholar 

  69. Xiao P, Sk MA, Thia L, et al. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energ Environ Sci, 2014, 7: 2624–2629

    Article  Google Scholar 

  70. Xing Z, Liu Q, Asiri AM, Sun X. Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water. Adv Mater, 2014, 26: 5702–5707

    Article  Google Scholar 

  71. Kibsgaard J, Jaramillo TF. Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew Chem Int Ed, 2014, 53: 14433–14437

    Article  Google Scholar 

  72. Tian J, Liu Q, Cheng N, Asiri AM, Sun X. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew Chem Int Ed, 2014, 53: 9577–9581

    Article  Google Scholar 

  73. Chen W, Sasaki K, Ma C, et al. Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew Chem Int Ed, 2012, 51: 6131–6135

    Article  Google Scholar 

  74. Cao B, Veith GM, Neuefeind JC, Adzic RR, Khalifah PG. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Am Chem Soc, 2013, 135: 19186–19192

    Article  Google Scholar 

  75. Vrubel H, Hu X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew Chem Int Ed, 2012, 51: 12703–12706

    Article  Google Scholar 

  76. Liao L, Wang S, Xiao J, et al. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energ Environ Sci, 2014, 7: 387–392

    Article  Google Scholar 

  77. Chen WF, Wang CH, Sasaki K, et al. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energ Environ Sci, 2013, 6: 943–951

    Article  Google Scholar 

  78. Xiao P, Ge X, Wang H, et al. Novel molybdenum carbide-tungsten carbide composite nanowires and their electrochemical activation for efficient and stable hydrogen evolution. Adv Funct Mater, 2015, 25: 1520–1526

    Article  Google Scholar 

  79. Wu R, Zhang J, Shi Y, Liu D, Zhang B. Metallic WO2-carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J Am Chem Soc, 2015, 137: 6983–6986

    Article  Google Scholar 

  80. Zheng Y, Jiao Y, Zhu Y, et al. Hydrogen evolution by a metal-free electrocatalyst. Nat Commun, 2014, 5: 3783

    Google Scholar 

  81. Xu Y, Gao M, Zheng Y, Jiang J, Yu S. Nickel/nickel(II) oxide nanoparticles anchored onto cobalt (IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew Chem Int Ed, 2013, 52: 8546–8550

    Article  Google Scholar 

  82. Zhu H, Zhang J, Yanzhang R, et al. When cubic cobalt sulfide meets layered molybdenum disulfide: a core-shell system toward synergetic electrocatalytic water splitting. Adv Mater, 2015, 27: 4752–4759

    Article  Google Scholar 

  83. Wang Z, Hao X, Jiang Z, et al. C and N hybrid coordination derived Co-C-N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J Am Chem Soc, 2015, 137: 15070–15073

    Article  Google Scholar 

  84. McKone JR, Sadtler BF, Werlang CA, Lewis NS, Gray HB. Ni-Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal, 2013, 3: 166–169

    Article  Google Scholar 

  85. Berit H, Poul Georg M, Jacob B, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc, 2005, 127: 5308–5309

    Article  Google Scholar 

  86. Jaramillo TF, Jørgensen KP, Bonde J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science, 2007, 317: 100–102

    Article  Google Scholar 

  87. Jaramillo TF, Bonde J, Zhang J, et al. Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts. J Phys Chem C, 2008, 112: 17492–17498

    Article  Google Scholar 

  88. Karunadasa HI, Montalvo E, Sun Y, et al. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science, 2012, 335: 698–702

    Article  Google Scholar 

  89. Ping L, Rodriguez JA. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. J Am Chem Soc, 2005, 127: 14871–14878

    Article  Google Scholar 

  90. Wan C, Regmi YN, Leonard BM. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed, 2014, 53: 6407–6410

    Article  Google Scholar 

  91. Gao MR, Liang JX, Zheng YR, et al. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat Commun, 2015, 6: 5982

    Article  Google Scholar 

  92. Winther-Jensen B, Fraser K, Ong C, Forsyth M, Mac Farlane DR. Conducting polymer composite materials for hydrogen generation. Adv Mater, 2010, 22: 1720–1727

    Article  Google Scholar 

  93. Gu C, Norris BC, Fan FRF, Bielawski CW, Bard AJ. Is base-inhibited vapor phase polymerized PEDOT an electrocatalyst for the hydrogen evolution reaction? Exploring substrate effects, including Pt contaminated Au. ACS Catal, 2012, 2: 746–750

    Article  Google Scholar 

  94. Alia SM, Pivovar BS, Yan Y. Platinum-coated copper nanowires with high activity for hydrogen oxidation reaction in base. J Am Chem Soc, 2013, 135: 13473–13478

    Article  Google Scholar 

  95. Wang Y, Wang G, Li G, et al. Pt-Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energ Environ Sci, 2015, 8: 177–181

    Article  Google Scholar 

  96. Mund K, Richter G, von Sturm F. Titanium-containing raney nickel catalyst for hydrogen electrodes in alkaline fuel cell systems. J Electrochem Soc, 1977, 124: 1–6

    Article  Google Scholar 

  97. Fan C, Piron DL, Sleb A, Paradis P. Study of electrodeposited nickel -molybdenum, nickel-tungsten, cobalt-molybdenum, and cobalt-tungsten as hydrogen electrodes in alkaline water electrolysis. J Electrochem Soc, 1994, 141: 382–387

    Article  Google Scholar 

  98. Sheng W, Bivens AP, Myint M, et al. Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energ Environ Sci, 2014, 7: 1719–1724

    Article  Google Scholar 

  99. Zhuang Z, Giles SA, Zheng J, et al. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nat Commun, 2016, 7: 10141

    Article  Google Scholar 

  100. Elbert K, Hu J, Ma Z, et al. Elucidating hydrogen oxidation/evolution kinetics in base and acid by enhanced activities at the optimized Pt shell thickness on the Ru core. ACS Catal, 2015, 5: 6764–6772

    Article  Google Scholar 

  101. Ram S, Dusan T, Dusan S, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li-Ni(OH)2-Pt interfaces. Science, 2011, 334: 1256–1260

    Article  Google Scholar 

  102. Jenseit W, Khalil A, Wendt H. Material properties and processing in the production of fuel cell components: I. Hydrogen anodes from Raney nickel for lightweight alkaline fuel cells. J Appl Electrochem, 1990, 20: 893–900

    Google Scholar 

  103. Raj IA, Vasu KI. Transition metal-based hydrogen electrodes in alkaline solution-electrocatalysis on nickel based binary alloy coatings. J Appl Electrochem, 1990, 20: 32–38

    Article  Google Scholar 

  104. Kiros Y, Majari M, Nissinen TA. Effect and characterization of dopants to Raney nickel for hydrogen oxidation. J Alloy Compd, 2003, 360: 279–285

    Article  Google Scholar 

  105. Lu S, Pan J, Huang A, Zhuang L, Lu J. Alkaline polymer electrolyte fuel cells completely free from noble metal cata lysts. Proc Natl Acad Sci USA, 2008, 105: 20611–20614

    Article  Google Scholar 

  106. Gong M, Zhou W, Tsai M, et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat Commun, 2014, 5: 4695

    Article  Google Scholar 

  107. Jin H, Wang J, Su D, et al. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J Am Chem Soc, 2015, 137: 2688–2694

    Article  Google Scholar 

  108. Zhang M, de Respinis M, Frei H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat Chem, 2014, 6: 362–367

    Article  Google Scholar 

  109. Yeo BS, Bell AT. In situ Raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J Phys Chem C, 2012, 116: 8394–8400

    Article  Google Scholar 

  110. Kornienko N, Resasco J, Becknell N, et al. Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J Am Chem Soc, 2015, 137: 7448–7455

    Article  Google Scholar 

  111. Landon J, Demeter E, Inoglu N, et al. Spectroscopic characterization of mixed Fe-Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal, 2012, 2: 1793–1801

    Article  Google Scholar 

  112. Tung C, Hsu Y, Shen Y, et al. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nat Commun, 2015, 6: 8106

    Article  Google Scholar 

  113. Cortie MB, McDonagh AM. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev, 2011, 111: 3713–3735

    Article  Google Scholar 

  114. Liang Y, Li Y, Wang H, Dai H. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Am Chem Soc, 2013, 135: 2013–2036

    Article  Google Scholar 

  115. Donega CDM. Synthesis and properties of colloidal heteronanocrystals. Chem Soc Rev, 2011, 40: 1512–1546

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongbin Zhuang  (庄仲滨).

Additional information

Siqi Lu was born in 1992. She is currently a PhD candidate at Beijing University of Chemical Technology under the supervision of Prof. Zhongbin Zhuang. Her research interests include electrocatalysts for electrochemical devices such as fuel cells.

Zhongbin Zhuang was born in 1983. He received BSc and PhD degrees from the Department of Chemistry, Tsinghua University in 2005 and 2010, respectively. After postdoctoral work at the University of California, Riverside, and the University of Delaware, he joined Beijing University of Chemical Technology as a professor in 2015. His current research interests include electrocatalysts for fuel cells and electrolyzers, interfacial electrochemistry, and methodology for nanocrystal synthesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Zhuang, Z. Electrocatalysts for hydrogen oxidation and evolution reactions. Sci. China Mater. 59, 217–238 (2016). https://doi.org/10.1007/s40843-016-0127-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-016-0127-9

Keywords

Navigation